Skip to main content
Log in

Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The removal behavior of U(VI) by Shewanella putrefaciens was investigated in this study. Our results demonstrated the formation of uranium phosphate biomineral, predominantly existed as chernikovite [H2(UO2)2(PO4)2·8H2O], on the cell surface of S. putrefaciens. The lamellar chernikovite was found at slightly acid pH, but not at pH > 7.0. Phosphate-containing groups played the key role in the formation of chernikovite based on the analysis of IR. After ashing and hydrothermal process, bacterially mediated chernikovite can be transformed into inorganic uranium phosphate and UO2, respectively. The findings can provide a potential strategy for in situ bioremediation of uranium in aerobic environment.

Graphical abstract

Biomineralization process of uranium on S. putrefaciens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. YiZ J, Yao J, ZhuMJ ChenHI, Wang F, Yuan ZM, Liu X (2016) Batch study of uranium biosorption by Elodea canadensis biomass. J Radioanal Nucl Chem 310:505–513

    Article  Google Scholar 

  2. Ding C, Cheng W, Jin Z, Sun Y (2015) Plasma synthesis of beta-cyclodextrin/Al(OH)(3) composites as adsorbents for removal of UO2 2+ from aqueous solutions. J Mol Liq 207:224–230

    Article  CAS  Google Scholar 

  3. Ding CC, Cheng WC, Sun YB, Wang XK (2015) Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim Cosmochim Acta 165:86–107

    Article  CAS  Google Scholar 

  4. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  5. Ding CC, Feng S, Li XL, Liao JL, Yang YY, An Z, Wu QQ, Zhang D, Yang JJ, Tang J, Zhang J, Liu N (2014) Mechanism of thorium biosorption by the cells of the soil fungal isolate Geotrichum sp dwc-1. Radiochim Acta 102:175–184

    Article  CAS  Google Scholar 

  6. Sun YB, Zhang R, Ding CC, Wang XX, Cheng WC, Chen CL, Wang XK (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65

    Article  CAS  Google Scholar 

  7. Yi ZJ, Yao J (2012) Kinetic and equilibrium study of uranium(VI) adsorption by Bacillus licheniformis. J Radioanal Nucl Chem 293:907–914

    Article  CAS  Google Scholar 

  8. Ding CC, Cheng WC, Sun YB, Wang XK (2015) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137

    Article  CAS  Google Scholar 

  9. Cheng WC, Ding CC, Sun YB, Wang XK (2015) Fabrication of fungus/attapulgite composites and their removal of U(VI) from aqueous solution. Chem Eng J 269:1–8

    Article  CAS  Google Scholar 

  10. Yi Z, Lian B (2012) Adsorption of U(VI) by Bacillus mucilaginosus. J Radioanal Nucl Chem 293:321–329

    Article  CAS  Google Scholar 

  11. Ding CC, Feng S, Cheng WC, Zhang J, Li XL, Liao JL, Yang YY, An Z, Luo SZ, Yang JJ, Tang J, Liu N (2014) Biosorption behavior and mechanism of thorium on Streptomyces sporoverrucosus dwc-3.J. Radioanal Nucl Chem 301:237–245

    Article  CAS  Google Scholar 

  12. Gadd GM, Pan X (2016) Biomineralization, bioremediation and biorecovery of toxic metals and radionuclides. Geomicrobiol J 33:175–178

    Article  CAS  Google Scholar 

  13. Mondani L, Piette L, Christen R, Bachar D, Berthomieu C, Chapon V (2012) Microbacterium lemovicicum sp. nov., a bacterium isolated from a natural uranium-rich soil. Int J Syst Evol Microbiol 63:2600–2606

    Article  Google Scholar 

  14. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  15. Kazy SK, Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  CAS  Google Scholar 

  16. Macaskie LE, Empson RM, Cheetham AK, Grey CP, Skarnulis AJ (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  CAS  Google Scholar 

  17. Macaskie LE, Bonthrone KM, Rouch DA (1994) Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria. FEMS Microbiol Lett 121:141–146

    Article  CAS  Google Scholar 

  18. Liang X, Csetenyi L, Gadd GM (2016) Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Appl Microbiol Biotechnol 33:1–11

    CAS  Google Scholar 

  19. Ohnuki T, Ozaki T, Yoshida T, Sakamoto F, Kozai N, Wakai E, Francis AJ, Iefuji H (2005) Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae. Geochim Cosmochim Acta 69:5307–5316

    Article  CAS  Google Scholar 

  20. Pinto AJ, Gonçalves MA, Prazeres C, Astilleros JM, Batista MJ (2012) Mineral replacement reactions in naturally occurring hydrated uranyl phosphates from the Tarabau deposit: examples in the Cu–Ba uranyl phosphate system. Chem. Geol. s 312–313:18–26

    Article  Google Scholar 

  21. Jerden JL, Sinha AK (2003) Phosphate based immobilization of uranium in an oxidizing bedrock aquifer. Appl Geochem 18:823–843

    Article  CAS  Google Scholar 

  22. Jensen KA, Palenik CS, Ewing RC (2002) U6+ phases in the weathering zone of the Bangombé U-deposit: observed and predicted mineralogy. Radiochim Acta 90:761–769

    CAS  Google Scholar 

  23. Rui X, Kwon MJ, O’Loughlin EJ, Dunhamcheatham S, Fein JB, Bunker B, Kemner KM, Boyanov MI (2013) Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products. Environ Sci Technol 47:5668–5678

    Article  CAS  Google Scholar 

  24. Cao B, Ahmed B, Kennedy DW, Wang Z, Shi L, Marshall MJ, Fredrickson JK, Isern NG, Majors PD, Beyenal H (2011) Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ Sci Technol 45:5483–5490

    Article  CAS  Google Scholar 

  25. Moon HS, Komlos J, Jaffé PR (2007) Uranium reoxidation in previously bioreduced sediment by dissolved oxygen and nitrate. Environ Sci Technol 41:4587–4592

    Article  CAS  Google Scholar 

  26. Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In-situ evidence for uranium immobilization and remobilization. Environ Sci Technol 36:1491–1496

    Article  CAS  Google Scholar 

  27. Stubbs JE, Elbert DS, Veblen DR, Zhu C (2006) Electron microbeam investigation of uranium-contaminated soils from oak ridge, TN, USA. Environ Sci Technol 40:2108–2113

    Article  CAS  Google Scholar 

  28. Liu M, Dong F, Wei Z, Nie X, Sun S, Wei H, Lang L, Sha X, Zhang G (2016) Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: a decrement solution for nuclide and heavy metal disposal. J Hazard Mater 314:295–303

    Article  CAS  Google Scholar 

  29. Stearn AE, Stearn EW (1928) Studies in the physico-chemical behavior of bacteria. A Quarterly of Research, University of Missouri Studies

  30. Bampaiti A, Yusan S, Aytas S, Pavlidou E, Noli F (2016) Investigation of uranium biosorption from aqueous solutions by Dictyopteris polypodioides brown algae. J Radioanal Nucl Chem 307:1335–1343

    Article  CAS  Google Scholar 

  31. Kulkarni S, Misra CS, Gupta A, Ballal A, Apte SK (2016) Interaction of uranium with bacterial cell surfaces: inferences from phosphatase-mediated uranium precipitation. Appl Environ Microbiol 82:4965–4974

    Article  Google Scholar 

  32. Panak P, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H (2000) Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim Acta 88:71–76

    CAS  Google Scholar 

  33. Haas JH, Dichristina TJ, Wade R (2001) Thermodynamics of U(VI) sorption onto Shewanella putrifaciens. Chem Geol 180:33–54

    Article  CAS  Google Scholar 

  34. Gorman-Lewis D, Elias PE, Fein JB (2005) Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ Sci Technol 39:4906–4912

    Article  CAS  Google Scholar 

  35. Osmond F (1887) Dosage colorimétrique du phosphore. Bull Soc chim (Paris) 47:745–748

    Google Scholar 

  36. Nie X, Dong F, Liu N, Liu M, Zhang D, Kang W, Sun S, Zhang W, Yang J (2015) Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions. Appl Surf Sci 347:122–130

    Article  CAS  Google Scholar 

  37. Krawczyk-Bärsch E, Lütke L, Moll H, Bok F, Steudtner R, Rossberg A (2015) A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers. Environ Sci Pollut R 22:4555–4565

    Article  Google Scholar 

  38. Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  CAS  Google Scholar 

  39. Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    Article  CAS  Google Scholar 

  40. Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2009) Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions. Geomicrobiol J 26:431–441

    Article  CAS  Google Scholar 

  41. Sousa T, Chung AP, Pereira A, Piedade AP, Morais PV (2013) Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes. Metallomics 5:390–397

    Article  CAS  Google Scholar 

  42. Martinez RJ, Beazley MJ, Taillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic uranium(VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9:3122–3133

    Article  CAS  Google Scholar 

  43. Suzuki Y, Banfield JF (2004) Resistance to, and accumulation of uranium by bacteria from a uranium-contaminated site. Geomicrobiology 21:113–121

    Article  CAS  Google Scholar 

  44. Riba O, Scott TB, Vala Ragnarsdottir K (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles[J]. Geochim Cosmochim Acta 72(16):4047–4057

    Article  CAS  Google Scholar 

  45. Acharya C, Joseph D, Apte SK (2009) Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042. Bioresour Technol 100:2176–2181

    Article  CAS  Google Scholar 

  46. Soylak M, Khan M, Alosmanov R, Shah J, Jan MR (2016) Solid phase extraction of uranium(VI) on phosphorus-containing polymer grafted 4-aminoantipyrine. J Radioanal Nucl Chem 308:955–963

    Article  CAS  Google Scholar 

  47. Alessi DS, Lezama-Pacheco JS, Stubbs JE, Janousch M, Bargar JR, Persson P, Bernier-Latmani R (2014) The product of microbial uranium reduction includes multiple species with U(IV)–phosphate coordination. Geochim Cosmochim Acta 131:115–127

    Article  CAS  Google Scholar 

  48. Müller K, Brendler V, Foerstendorf H (2008) Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection fourier-transform infrared spectroscopy. Inorg Chem 47:10127–10134

    Article  Google Scholar 

  49. Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3533–3547

    Article  CAS  Google Scholar 

  50. Wazne M, Korfiatis GP, Meng X (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ Sci Technol 37:3619–3624

    Article  CAS  Google Scholar 

  51. Müller K, Foerstendorf H, Meusel T, Brendler V, Lefèvre G, Comarmond MJ, Payne TE (2012) Sorption of U(VI) at the TiO2–water interface: an in situ vibrational spectroscopic study. Geochim Cosmochim Acta 76:191–205

    Article  Google Scholar 

  52. Yu D, Bo B, Yunhua H (2013) Fabrication of TiO2@Yeast-carbon hybrid composites with the raspberry-like structure and their synergistic adsorption-photocatalysis performance. J Nanomater 2013:4053–4062

    Google Scholar 

  53. Paterson-Beedle M, Readman JE, Hriljac JA, Macaskie LE (2010) Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy 104:524–528

    Article  CAS  Google Scholar 

  54. Pan X, Chen Z, Chen F, Cheng Y, Lin Z, Guan X (2015) The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains. J Hazard Mater 297:313–319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program: 2014CB846003), the China National Natural Science Foundation (Grant number: 41502316, 41672039), the Doctor Foundation of Southwest University of Science and Technology (Grant number: 15zx7109), the Prior Research Foundation of Fundamental Science on Nuclear Waste and Environmental Security Laboratory (Grant number: 15yyhk11), and the Undergraduate Innovation Fund Project by Southwest University of Science and Technology (CX16-021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Nie or Congcong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Nie, X., Dong, F. et al. Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions. J Radioanal Nucl Chem 312, 531–541 (2017). https://doi.org/10.1007/s10967-017-5261-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5261-7

Keywords

Navigation