Skip to main content
Log in

Adsorption of U(VI) by Bacillus mucilaginosus

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uranium contamination is a major environmental problem. Biosorption is a potentially important pathway for immobilization of uranyl cations (UO2 2+). This study investigated the potentiality of utilization of Bacillus mucilaginosus as a biosorbent for U(VI) removal from aqueous solutions. Batch experiments were conducted to examine U(VI) adsorption to B. mucilaginosus when pH, sorption time, reaction temperature, biosorbent dosage, initial U(VI) concentration were independently changed. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The accumulation process was highly pH dependent within the pH range between 2.0–7.0. An initial solution pH of 5.5 was most favorable for U(VI) removal. Temperature over the range 25–45 °C had no effect on the U(VI) biosorption. The U(VI) uptake was rapid within the first 30 min and equilibrium was reached at 1 h. The U(VI) removal efficiency increased concomitantly with increasing biomass dosage, while the biosorption capacity decreased. The biomass had an observed maximum U(VI) biosorption capacity of 172 mg/g dry weight of biomass. The biosorption process could be well defined by Langmuir isotherms. The adsorption kinetics data were fitted very well by the pseudo first-order rate model. The X-ray photoelectron spectroscopy analysis confirmed that uranium in the solution was immobilized onto the biomass during the course of biosorption. The present results suggest that B. mucilaginosus can be used as a biosorbent for an efficient removal of U(VI) from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Morrison SJ, Spangler RR, Tripathi VS (1995) Adsorption of uranium(VI) on amorphous ferric oxyhydroxide at high concentrations of dissolved carbon(IV) and sulfur(VI). J Contam Hydrol 17:333–346

    Article  CAS  Google Scholar 

  2. Zhang XZ, Luo SG, Yang Q, Zhang HL, Li JY (1997) Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. J Appl Phycol 9:65–71

    Article  CAS  Google Scholar 

  3. Liao XP, Lu ZB, Du X, Liu X, Shi B (2004) Collagen fiber immobilized Myrica rubra tannin and its adsorption to UO2 2+. Environ Sci Technol 38:324–328

    Article  CAS  Google Scholar 

  4. Ohnuki T, Yoshida T, Ozakia T, Samadfam M, Kozai N, Yubuta K, Mitsugashira T, Kasama T, Arokiasamy FJ (2005) Interactions of uranium with bacteria and kaolinite clay. Chem Geol 220:237–243

    Article  CAS  Google Scholar 

  5. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  6. Bayramoglu G, Celik G, Arica MY (2006) Studies on accumulation of uranium by fungus Lentinus sajor-caju. J Hazard Mater 136:345–353

    Article  CAS  Google Scholar 

  7. Chen BD, Zhu YG, Smith FA (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62:1464–1473

    Article  CAS  Google Scholar 

  8. Bhat SV, Meloa JS, Chaugule BB, D’Souza SF (2008) Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  Google Scholar 

  9. Khani MH, Keshtkar AR, Ghanadi M, Pahlavanzadeh H (2008) Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae. J Hazard Mater 150:612–618

    Article  CAS  Google Scholar 

  10. Acharya C, Joseph D, Apte SK (2009) Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042. Bioresour Technol 100:2176–2181

    Article  CAS  Google Scholar 

  11. Chabalala S, Chirwa EMN (2010) Removal of uranium(VI) under aerobic and anaerobic conditions using an indigenous mine consortium. Miner Eng 23:526–531

    Article  CAS  Google Scholar 

  12. Wang JS, Hu XJ, Liu YG, Xie SB, Bao ZL (2010) Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101:504–508

    Article  CAS  Google Scholar 

  13. Li PF, Mao ZY, Rao XJ, Wang XM, Min MZ, Qiu LW, Liu ZL (2004) Biosorption of uranium by lake-harvested biomass from a cyanobacterium bloom. Bioresour Technol 94:193–195

    Article  CAS  Google Scholar 

  14. Gorman LD, Elias PE, Fein JB (2005) Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ Sci Technol 39:4906–4912

    Article  Google Scholar 

  15. Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41:1366–1378

    Article  CAS  Google Scholar 

  16. Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  Google Scholar 

  17. Xie SB, Yang J, Chen C, Zhang XJ, Wang QL, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  Google Scholar 

  18. Kazy SK, D’Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp., mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  CAS  Google Scholar 

  19. Lian B, Souleimanov A, Zhou X, Smith DL (2002) In vitro induction of lipo-chitooligosaccharide production in Bradyrhizobium japonicum cultures by root extracts from non-leguminous plants. Microbiol Res 157:157–160

    Article  CAS  Google Scholar 

  20. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trail. Geoderma 25:155–166

    Article  Google Scholar 

  21. Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  22. Li X, Wu ZQ, Li WD, Yan RX, Li L, Li J, Li YH, Li MG (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125

    Article  CAS  Google Scholar 

  23. Chen S, Lian B, Liu CQ (2008) The role of a strain of Bacillus mucilaginosus on weathering of phosphorite rock under experimental conditions. Acta Miner Sin 28:77–83 (in Chinese with English abstract)

    CAS  Google Scholar 

  24. Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soils 317:235–255

    Article  CAS  Google Scholar 

  25. Zhao HX, Lian B, Xie ZH, Chen Y, Zhu LJ (2008) Water quality analysis and microbial treatment of the colliery area of Kaili in Guizhou province China. Acta Miner Sin 28:71–76 (in Chinese with English abstract)

    Google Scholar 

  26. Deng SB, Bai RB, Hu XM, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol 60:588–593

    CAS  Google Scholar 

  27. Chen Y, Lian B (2005) Study on the flocculability of chromium ion by Bcillus mucilaginosus GY03 strain. Pedosphere 15:225–231

    CAS  Google Scholar 

  28. Lian B, Chen Y, Zhao J, Teng HH, Zhu L, Yuan S (2008) Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol 99:4825–4831

    Article  CAS  Google Scholar 

  29. Hao JC, Deng YN, Cao WC, Lian B, Liu CQ (2011) Removal of Fe3+ in simulated wastewater by Bacillus mucilaginosus, Asperillus niger, zeolite and their different combination. Chin J Environ Eng 5:1507–1512

    CAS  Google Scholar 

  30. Mo BB, Lian B (2011) Hg(II) adsorption by Bacillus mucilaginosus: mechanism and equilibrium parameters. World J Microbiol Biotechnol 27:1063–1070

    Article  CAS  Google Scholar 

  31. Xie SB, Zhang C, Zhou XH, Yang J, Zhang XJ, Wang JS (2009) Removal of uranium(VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  CAS  Google Scholar 

  32. Briggs D (1990) Applications of XPS in polymer technology. In: Briggs D, Seah MP (eds) Practical surface analysis—Auger and X-ray Photoelectron Spectroscopy, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  33. Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater 135:87–93

    Article  CAS  Google Scholar 

  34. Sar P, Kazy SK, D’Souza SF (2004) Radionuclide remediation using a bacterial biosorbent. Int Biodeterior Biodegrad 54:193–202

    Article  CAS  Google Scholar 

  35. Saxena S, Prasad M, D’Souza SF (2006) Radionuclide sorption onto low-cost mineral adsorbent. Ind Eng Chem Res 45:9122–9128

    Article  CAS  Google Scholar 

  36. Marques AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F (1991) Uranium accumulation by Pseudomonas sp. EPS-5028. Appl Microbiol Biotechnol 35:406–410

    Article  CAS  Google Scholar 

  37. Aksu Z (2001) Equilibrium and kinetic modeling of cadmium(II) biosorption by C. vulgaris in a batch system, effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  38. Gadd GM, White C (1989) Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol Bioeng 33:592–597

    Article  CAS  Google Scholar 

  39. Kazy SK, Sar P, D’Souza SF (2008) Studies on uranium removal by the extracellular polysaccharide of a Pseudomonas aeruginosa strain. Bioremediat J 12:47–57

    Article  CAS  Google Scholar 

  40. Nancharaiah YV, Joshi HM, Mohan TVK, Venugopalan VP, Narasimhan SV (2006) Aerobic granular biomass: a novel biomaterial for efficient uranium removal. Curr Sci 91:503–509

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Fund for Creative Research Groups (Grant no. 41021062) as well as National Natural Science Foundation of China (Grant no. 40773069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Z., Lian, B. Adsorption of U(VI) by Bacillus mucilaginosus . J Radioanal Nucl Chem 293, 321–329 (2012). https://doi.org/10.1007/s10967-012-1702-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1702-5

Keywords

Navigation