Skip to main content
Log in

Studies on the feasibility of using a novel phosphonate resin for the separation of U(VI), La(III) and Pr(III) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In view to separate La(III), Pr(III) and U(VI) ions, from aqueous solutions, batch experiments are carried out for the sorption and desorption of these ions onto and from a novel functionalized resin. The sorption capacities varied from 1.06 to 47.30 mg/g and increased in the following order La(III), Pr(III) and U(VI), while yields desorption ranged from 73.0 to 94.3% and increased in the following order Pr(III), La(III) and U(VI). Considering the largest difference in sorption capacity and desorption yield of these three elements, at different operates conditions, this material can be potential candidate for the separation of U(VI), Pr(III) and La(III) ions from nuclear and other industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou L, Wang Y, Zou H, Liang X, Zeng K, Liu Z, Adesina AA (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 307:635–644

    Article  CAS  Google Scholar 

  2. Gładysz-Płaska A, Majdan M, Grabias E (2014) Adsorption of La, Eu and Lu on raw and modified red clay. J Radioanal Nucl Chem 301:33–40

    Article  Google Scholar 

  3. Varshini CJS, Das D, Das N (2015) Optimization of parameters for praseodymium(III) biosorption onto biowaste materials using response surface methodology: equilibrium, kinetic and regeneration studies. Ecol Eng 81:321–327

    Article  Google Scholar 

  4. Torab-Mostaedi M, Asadollahzadeh M, Hemmati A, Khosravi A (2015) Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies. Res Chem Intermed 41:559–573

    Article  CAS  Google Scholar 

  5. Lokshin EP, Tareeva OA, Elizarova IR (2015) Isolation of rare earth elements from ammonium salts solutions. Theor Found Chem Eng 49(4):555–559

    Article  CAS  Google Scholar 

  6. Besharati-Seidani A, Shamsipur M (2015) Ion-imprinted polymeric nanoparticles for fast and selective separation of lanthanum(III). Microchim Acta 182:1747–1755

    Article  CAS  Google Scholar 

  7. Lokshin EP, Tareeva OA, Elizarova IR, Kalinnikov VT (2015) Recovery of rare earth elements from the wet process phosphoric acid. Russ J Appl Chem 88(1):1–12

    Article  CAS  Google Scholar 

  8. Macka M, Nesterenko P, Andersson P, Haddad PR (1998) Separation of uranium(VI) and lanthanides by capillary electrophoresis using on-capillary complexation with arsenazoIII. J Chromatogr A 803:279–290

    Article  CAS  Google Scholar 

  9. Kalyakin SN, Kuz’min VI, Mulagaleeva MA (2015) Binary extraction of lanthanide(III) chlorides using carboxylates and dialkylphosphates of secondary and tertiary amines. Hydrometallurgy 151:116–121

    Article  CAS  Google Scholar 

  10. Alfonso MC, Bennett ME, Folden CM (2016) Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media. J Radioanal Nucl Chem 307:1529–1536

    Article  CAS  Google Scholar 

  11. Ostapenko V, Sinenko I, Arefyeva E, Lapshina E, Ermolaev S, Zhuikov B, Kalmykov S (2017) Sorption of protactinium(V) on extraction chromatographic resins from nitric and hydrochloric solutions. J Radioanal Nucl Chem 311(2):1545–1550

    Article  CAS  Google Scholar 

  12. Luo BC, Yuan LY, Chai ZF, Shi WQ, Tang Q (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307:269–276

    Article  CAS  Google Scholar 

  13. Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-Setapar SH, Khatoon A, Shiekh RA (2015) New generation Amberlite XAD resin for the removal of metal ions: a review. J Environ Sci 31:104–123

    Article  Google Scholar 

  14. Liu Z, Li H (2015) Metallurgical process for valuable elements recovery from red mud—a review. Hydrometallurgy 155:29–43

    Article  CAS  Google Scholar 

  15. Hubicka H, Kołodyńska D (2001) Studies on application of polyacrylate anion-exchangers in sorption and separation of iminodiacetate rare earth element(III) complexes. Hydrometallurgy 62:107–113

    Article  CAS  Google Scholar 

  16. Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earths 31(10):933–943

    Article  CAS  Google Scholar 

  17. Yang P, Ecclesb H, Macaskie LE (1996) Determination of uranium, thorium and lanthanum in mixed solutions using simultaneous spectrophotometry. Anal Chim Acta 329(1–2):173–179

    Article  Google Scholar 

  18. El-Dessouky SI, El-Sofany EA, Daoud JA (2007) Studies on the sorption of praseodymium(III), holmium(III) and cobalt(II) from nitrate medium using TVEX–PHOR resin. J Hazard Mater 143:17–23

    Article  CAS  Google Scholar 

  19. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169

    Article  CAS  Google Scholar 

  20. Villemin D, Monteil C, Bar N, Didi MA (2015) Phosphonated polyethyleneimines (PEIP) as multi-use polymers. Phosphorus Sulfur Silicon 190:879–890

    Article  CAS  Google Scholar 

  21. Moedritzer K, Irani R (1966) The direct synthesis of a-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J Org Chem 31:1603–1607

    Article  CAS  Google Scholar 

  22. Kadous A, Didi MA, Villemin D (2011) Removal of uranium(VI) from acetate medium using Lewatit TP 260 resin. J Radioanal Nucl Chem 288:553–561

    Article  CAS  Google Scholar 

  23. Cortina JL, Miralles N, Sastre AM, Aguilar M (1997) Solid-liquid extraction studies of divalent metals with impregnated resins containing mixtures of organophosphorusextractants. React Funct Polym 32:221–229

    Article  CAS  Google Scholar 

  24. Ferraro JR, Herlinger AW, Chiarizia R (1998) Correlation of the asymmetric and symmetric POO- frequencies with the ionic potential of the metal ion in compounds of organophosphorus acid extractants: a short review. Solvent Extr Ion Exch 16(3):775–794

    Article  CAS  Google Scholar 

  25. Thomas LC (1974) Interpretation of the infrared spectra of organophosphorus compounds. Heyden, London

    Google Scholar 

  26. Vijayaraghavan K, Jegan J (2015) Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions. J Rare Earth 33(11):1196–1203

    Article  CAS  Google Scholar 

  27. Sreenivas T, Rajan KC (2013) Studies on the separation of dissolved uranium from alkaline carbonate leach slurries by resin-in-pulp process. Sep Purif Technol 112:54–60

    Article  CAS  Google Scholar 

  28. Shvoeva OP, Dedkova VP, Savvin SB (2011) Complexation reactions between lanthanum, gadolinium, and ytterbium and reagents of arsenazo III group on the surface of fibrous materials loaded with a Chelex 100 ion exchanger. J Anal Chem 66(7):590–594

    Article  CAS  Google Scholar 

  29. Kozhevnikova NM (2012) Sorption of praseodymium(III) ions from aqueous solutions by a natural clinoptilolite-containing tuff. Russ J Phys Chem A 86(1):127–130

    Article  CAS  Google Scholar 

  30. Franz RG (2001) Comparisons of pKa and log P values of some carboxylic and phosphonic acids: synthesis and measurement. AAPS Pharmsci 3(2):1–13

    Article  Google Scholar 

  31. Ponou J, Wang LP, Dodbiba G, Okaya K, Fujita T, Mitsuhashi K, Atarashi T, Satoh G, Noda M (2014) Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. J Environ Chem Eng 2:1070–1081

    Article  CAS  Google Scholar 

  32. Sepehrian H, Cheraghali R, Rezaei P, Abdi HA (2011) Adsorption behavior of lanthanum on modified nanoporousaluminosilicates. Int J Ind Chem 2(4):235–241

    Google Scholar 

  33. Şimşek S, Yılmaz E, Boztuğ A (2013) Amine-modified maleic anhydride containing terpolymers for the adsorption of uranyl ion in aqueous solutions. J Radioanal Nucl Chem 298:923–930

    Article  Google Scholar 

  34. Morsy AMA, Hussein AEM (2011) Adsorption of uranium from crude phosphoric acid using activated carbon. J Radioanal Nucl Chem 288:341–346

    Article  CAS  Google Scholar 

  35. Gode F, Pehlivan E (2003) A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. J Hazard Mater B100:231–243

    Article  Google Scholar 

  36. Abdel-Galil EA, El-kenany WM, Hussin LMS (2015) Preparation of nanostructured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions. Russ J Appl Chem 88(8):1351–1360

    Article  CAS  Google Scholar 

  37. Wang YQ, Zhang Z, Li Q, Liu YH (2012) Adsorption of uranium from aqueous solution using HDTMA+-pillared bentonite: isotherm, kinetic and thermodynamic aspects. J Radioanal Nucl Chem 293:231–239

    Article  CAS  Google Scholar 

  38. Ahmadi M, Yavari R, Faal AY, Aghayan H (2016) Preparation and characterization of titanium tungstophosphate immobilized on mesoporous silica SBA-15 as a new inorganic composite ion exchanger for the removal of lanthanum from aqueous solution. J Radioanal Nucl Chem 310(1):177–190

    Article  CAS  Google Scholar 

  39. Yuqian G, Shimin Z, Kaiya Z, Zhiwei W, Shuxia X, Zhenpu L, Kun W (2015) Adsorption of La3+ and Ce3+ by poly-γ-glutamic acid crosslinked with polyvinyl alcohol. J Rare Earth 33(8):884–891

    Article  Google Scholar 

  40. Torab-Mostaedi M (2013) Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic and thermodynamic studies. Chem Ind Chem Eng Q 19(1):79–88

    Article  CAS  Google Scholar 

  41. Tonghuan L, Zhen X, Guojian D, Yinping T, Qiangqiang Z, Wangsuo W (2016) Adsorptive features of poli(acrylic acid-co-hydroxyapatite) composite for UO2 2+. J Radioanal Nucl Chem 307:1221–1230

    Article  Google Scholar 

  42. Rahman MM, Khan SB, Marwani HM, Asiri AM (2014) SnO2–TiO2 nanocomposites as new adsorbent for efficient removal of La(III) ions from aqueous solutions. J Taiwan Inst Chem Eng 45:1964–1974

    Article  CAS  Google Scholar 

  43. Misaelides P, Godelitsas A, Harissopoulos S, Anousis I (2001) Interaction of granitic biotite with selected lanthanides and actinides. J Radioanal Nucl Chem 247(2):325–328

    Article  CAS  Google Scholar 

  44. Ogata T, Narita H, Tanaka M (2015) Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy 152:178–182

    Article  CAS  Google Scholar 

  45. Mallah MH, Maragheh MG, Badiei A, Sbo RH (2010) Novel functionalized mesopore of SBA-15 as prospective sorbent for praseodymium and lutetium. J Radioanal Nucl Chem 283:597–601

    Article  CAS  Google Scholar 

  46. Van Hecke K, Modolo G (2004) Separation of actinides from low level liquid wastes (LLLW) by extraction chromatography using novel DMDOHEMA and TODGA impregnated resins. J Radioanal Nucl Chem 261(2):269–275

    Article  Google Scholar 

  47. Cheira MF (2015) Synthesis of pyridylazo resorcinol—functionalized Amberlite XAD-16 and its characteristics for uranium recovery. J Environ Chem Eng 3:642–652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abderrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendiaf, H., Abderrahim, O., Villemin, D. et al. Studies on the feasibility of using a novel phosphonate resin for the separation of U(VI), La(III) and Pr(III) from aqueous solutions. J Radioanal Nucl Chem 312, 587–597 (2017). https://doi.org/10.1007/s10967-017-5244-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5244-8

Keywords

Navigation