Skip to main content
Log in

Methane content and isotopic composition of shallow groundwater: implications for environmental monitoring related to shale gas exploitation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The baseline methane for shallow groundwater can provide an important evidence to interpret possible methane stray associated with shale gas exploration. This study investigated and traced methane content and its origin of shallow groundwater in a karst aquifer in the Fuling shale gas block, SW China. The results show that methane contents of shallow groundwater are all less than 0.01 mg L−1 and volumetric content in dissolved gas ranges from not detected to 0.0064%. The δ13C-CH4 ranges from −74.4 to −49.1‰, suggesting biogenic origin. For the first time, the δ13C-CH4 and 3He/4He end-numbers were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science. doi:10.1126/science.1235009

    Google Scholar 

  2. Vengosh A, Warner N, Jackson RB, Darrah T (2013) The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States. Procedia Earth Planet Sci 7:863–866

    Article  CAS  Google Scholar 

  3. Guo X (2014) Shale gas enrichment mechanism and exploration technology in Jiaoshi block of Fuling gas field. Science Press, Beijing

    Google Scholar 

  4. China Geological Survey (2015) The shale gas resources in China. Geological Press, Beijing

    Google Scholar 

  5. Kharaka YK, Thordsen JJ, Conaway CH, Thomas RB (2013) The energy–water nexus: potential groundwater-quality degradation associated with production of shale gas. Procedia Earth Planet Sci 7:417–422

    Article  Google Scholar 

  6. Vengosh A, Jackson RB, Warner N (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United State. Environ Sci Technol 48(15):8334–8348

    Article  CAS  Google Scholar 

  7. Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao K, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci USA 109:11961–11966

    Article  CAS  Google Scholar 

  8. Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci USA 108:8172–8176

    Article  CAS  Google Scholar 

  9. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton

    Google Scholar 

  10. Etiope G, Schoell M (2014) Abiotic gas: atypical, but not rare. Elements 10:291–296

    Article  CAS  Google Scholar 

  11. Fuex AN (1977) The application of stable carbon isotope in the exploration of oil and gas. J Geochem Explor 7:155–188

    Article  CAS  Google Scholar 

  12. Institute of Geochemistry-Chinese Academy of Sciences (1998) Advanced geochemistry. Science Press, Beijing

    Google Scholar 

  13. Dai J, Zou C, Zhang S, Li J, Ni Y, Hu G, Luo X, Tao S, Zhu G, Mi J, Li Z, Hu A, Yang C, Zhou Q, Shuai Y, Zhang Y, Ma C (2008) Discrimination of abiogenic and biogenic alkane gases. Sci China Earth Sci 51:1737–1749

    Article  CAS  Google Scholar 

  14. Welhan JA (1987) Characteristics of abiotic methane in rocks. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks, Geological Association of Canada Special Paper 33:225–233

  15. Jackson RE, Gorody AW, Mayer B, Roy JW, Ryan MC, Van Stempvoort DR (2013) Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research. Groundwater 51:488–510

    Article  CAS  Google Scholar 

  16. Saba T, Orzechowski M (2011) Lack of data to support a relationship between methane contamination of drinking water wells and hydraulic fracturing. Proc Natl Acad Sci USA 108:E663

    Article  CAS  Google Scholar 

  17. Schon SC (2011) Hydraulic fracturing not responsible for methane migration. Proc Natl Acad Sci USA 108:E664

    Article  CAS  Google Scholar 

  18. Révész KM, Breen KJ, Baldassare AJ, Burruss RC (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. Appl Geochem 25:1845–1859

    Article  Google Scholar 

  19. Grasby SE, Ferguson G, Brady A, Sharp C, Dunfield P, McMechan M (2016) Deep groundwater circulation and associated methane leakage in the northern Canadian Rocky Mountains. Appl Geochem 68:10–18

    Article  CAS  Google Scholar 

  20. Zhang L, Soeder DJ (2016) Modeling of methane migration in shallow aquifers from shale gas well drilling. Groundwater 54(3):345–353

    Article  CAS  Google Scholar 

  21. Schloemer S, Elbracht J, Blumenberg M, Illing CJ (2016) Distribution and origin of dissolved methane, ethane and propane in shallow groundwater of Lower Saxony, Germany. Appl Geochem 67:118–132

    Article  CAS  Google Scholar 

  22. Yang R, He S, Hu Q, Hu D, Yi J (2016) Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China. Mar Petrol Geol 77:247–261

    Article  CAS  Google Scholar 

  23. Hu D, Zhang H, Ni K, Yu G (2014) Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin. Nat Gas Ind 34:17–23

    Google Scholar 

  24. Lü Y, Hu W, Zhou J (2012) Analysis on karst development law and its influencing factors in Jiaoshi area of Chongqing city. Chin J Geol Hazard Control 23(2):59–63

    Google Scholar 

  25. Luo L, Pang Z, Luo J, Li Y, Kong Y, Pang J, Wang Y (2014) Noble gas isotopes to determine the depth of the geothermal fluid circulation. Chin J Geol 49:888–898

    CAS  Google Scholar 

  26. Eltschlager KK, Hawkins JW, Ehler WC, Baldassare F (2001) Technical measures for the investigation and mitigation of fugitive methane hazards in areas of coal mining. US Dept of the Interior, Office of Surface Mining Reclamation and Enforcement, Pittsburgh

  27. Fuex AN (1980) Experimental evidence against an appreciable isotopic fractionation of methane during migration. Adv Org Geochem 12:725–732

    CAS  Google Scholar 

  28. Bacsik Z, Lopes JNC, Gomes MFC, Jancso G, Mink J, Padua AAH (2002) Solubility isotope effects in aqueous solutions of methane. J Chem Phys 116:10816–10824

    Article  CAS  Google Scholar 

  29. Wei X, Guo D, Liu R (2016) Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling Shale Gasfield, Chongqing. Nat Gas Geosci. 27(3):539–548

    CAS  Google Scholar 

  30. Klass DL (1984) Methane from anaerobic fermentation. Science 223:1021–1028

    Article  CAS  Google Scholar 

  31. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem 10(4):759–768

    Article  CAS  Google Scholar 

  32. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  CAS  Google Scholar 

  33. Lansdown JM, Quay PD, King SL (1992) CH4 production via CO2 reduction in a temperate bog: a source of 13-C-depleted CH4. Geochim Cosmochim Acta 56:3493–3503

    Article  CAS  Google Scholar 

  34. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50:693–709

    Article  CAS  Google Scholar 

  35. Cai C, Amranic A, Wordend RH (2016) Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China. Geochim Cosmochim Acta 182:88–108

    Article  CAS  Google Scholar 

  36. Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim Cosmochim Acta 33:49–64

    Article  CAS  Google Scholar 

  37. Wang G, Zhang Z, Wang M, Wang J, Liu W, Yi L, Sun M (2003) Geochemistry of geothermal water and noble gases in Yanhuai basin. China Seismol Geol 25(3):421–429

    Google Scholar 

  38. Sano Y (1982) 3He/4He ratios of methane-rich natural gases in Japan. Geochem J 16(5):237–245

    Article  CAS  Google Scholar 

  39. Xu S, Nakai S, Wakita H, Wang X (2004) Carbon and noble gas isotopes in the Tengchong volcanic geothermal area, Yunnan, Southwestern China. Acta Geol Sin 78(5):1122–1135

    Article  Google Scholar 

  40. Zhao P, Duo J, Liang T, Jin J, Zhang H (1998) The gas geochemical characteristics of the Yangbajing geothermal field in Tibet. Chin Sci Bull 43(7):691–696

    Google Scholar 

  41. Cao C, Zhang M, Tang Q, Lü Z, Wang Y, Du L, Li Z (2015) Geochemical characteristics and implications of shale gas in Longmaxi Formation, Sichuan Basin, China. Nat Gas Geosci 26:1604–1612

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant XDB10030603) and National Natural Science Foundation of China (Grant 41672254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Pang, Z., Tian, J. et al. Methane content and isotopic composition of shallow groundwater: implications for environmental monitoring related to shale gas exploitation. J Radioanal Nucl Chem 312, 577–585 (2017). https://doi.org/10.1007/s10967-017-5243-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5243-9

Keywords

Navigation