Skip to main content
Log in

In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The non-invasive quantification of AMPA receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) could become a prognostic marker for brain disorders. 99mTc-tricarbonyl oxiracetam complex was prepared as a novel probe for AMPA receptor targeting with radiolabeling yield >98% and showed stability of 12 h. Molecular modeling and docking studies of 99mTc-tricarbonyl oxiracetam were performed. The results suggested that the complex act as very good positive allosteric modulators for AMPA receptor. The biodistribution studies revealed high brain uptake (7.5 ± 0.11% %ID/g) at 5 min post-I.V. injection that make 99mTc-tricarbonyl oxiracetam as a novel brain perfusion imaging radiotracer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grove SJ, Jamieson C, Maclean JK, Morrow JA, Rankovic Z (2010) Positive allosteric modulators of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (ampa) receptor. J Med Chem 53:7271–7279

    Article  CAS  Google Scholar 

  2. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MV, Connor JA, Zukin RS (1997) Global ischemia induces down regulation of Glur2 mRNA and increases AMPA receptor-mediated Ca influx in hippocampal CA1 neurons of gerbil. J Neurosci 17:6179–6188

    CAS  Google Scholar 

  3. Stensbol TB, Madsen U, Krogsgaard-Larsen P (2002) The AMPA receptor site: focus on agonists and competitive antagonists. Curr Pharm Des 8(10):857–872

    Article  CAS  Google Scholar 

  4. Mondadori C, Mobius HJ, Borkowski J (1996) The GABA receptor antagonist CGP 36,742 and the nootropic oxiracetam facilitate the formation of long-term memory. Behav Brain Res 77(1–2):223–225

    Article  CAS  Google Scholar 

  5. Zhang Q, Yang W, Yang Y, Xing H, Zhang Q, Li J, Lu Y, He J, Yang S, Zhao D, Chen X (2015) Comparative pharmacokinetic studies of racemic oxirzcetam and its pure enantiomers after oral administration in rats by a stereoselective HPLC method. J Pharm Biomed Anal 111:153–158

    Article  CAS  Google Scholar 

  6. Nicolaus BJR (1982) Chemistry and pharmacology of nootropic. Drug Dev Res 2(5):463–474

    Article  CAS  Google Scholar 

  7. Metter FA, Guiberteau MJ (2006) Essentials of nuclear medicine imaging. Radioactivity, radionuclides, and radiopharmaceuticals, Chapter 1, 5th edn. Saunders, Elsevier, Philadelphia, pp 1–13

    Google Scholar 

  8. EssaBM SakrTM, KhedrMA El-Essawy FA, El-Mohty AA (2015) 99mTc-Amitrole as a novel selective imaging probe for solid tumor: in silico and preclinical pharmacological study. Eur J Pharm Sci 76:102–109

    Article  Google Scholar 

  9. SakrTM El-SafouryDM, Awad GAS, Motaleb MA (2013) Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging. J Label Compd Radiopharm 56:392–395

    Article  Google Scholar 

  10. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP (2001) Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(CO)3(H2O)3]+. J Am Chem Soc 123(13):3135–3136

    Article  CAS  Google Scholar 

  11. Kothari K, Joshi S, Venkatesh M, Ramamoorthy N, Pillai MRA (2003) Synthesis of 99mTc(CO)3-mebrofenin via [99mTc(CO)3(H2O)3]+ precursor and comparative pharmacokinetics studies with 99mTc-mebrofenin. J Label Compd Radiopharm 46:633–644

    Article  CAS  Google Scholar 

  12. Djokić DDJ, Janković DLJ, Stamenković LLJ, Pirmettis I (2004) Chemical and biological evaluation of technetium(I) Tricarbonyl complexes with EHIDA and DPD 99mTc(I) complexes of EHIDA and DPD. Nucl Med Rev Cent East Eur 7(1):1–5

    Google Scholar 

  13. Satpati D, Mallia M, Kothari K, Pillai MRA (2004) Comparative evaluation of [99mTc(CO)3(H2O)3]+ precursor synthesized by conventional method and by using carbonyl kit. J Label Compd Radiopharm 47:657–668

    Article  CAS  Google Scholar 

  14. He H, Morley JE, Twamley B, Groeneman RH, Bucar DK, MacGillivray LR, Benny PD (2009) Investigation of the coordination interactions of S-(pyridin-2-ylmethyl)-l-cysteine ligands with M(CO)3 (M=Re, 99mTc). Inorg Chem 48:10625–10634

    Article  CAS  Google Scholar 

  15. Sanad MH, Borai E (2015) Comparative biological evaluation between 99mTc tricabonyl and 99mTc–Sn(II) levosalbutamol as a β2-adrenoceptor agonist. Radiochim Acta 103:879–891

    Article  CAS  Google Scholar 

  16. Sanad MH, Shweeta H (2015) Preparation and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for hepatobiliary imaging. J Mol Imag Dyn 5:119

    Google Scholar 

  17. Sanad MH, El-Bayoumy ASA, Ibrahim Alhussein A (2016) Comparative biological evaluation between 99mTc(CO)3 and 99mTc–Sn(II) complexes of novel quinoline derivative: a promising infection radiotracer. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4945-8

    Google Scholar 

  18. Zhang J, Wang X, Jin C (2007) Synthesis and biodistribution of the 99mTc (CO)3-DEDT complex as a potential new radiopharmaceutical for brain imaging. J Radioanal Nucl Chem 272(1):91–94

    Article  CAS  Google Scholar 

  19. Satpati D, Bapat K, Mukherjee A, Banerjee S, Kothari K, Venkatesh M (2006) Preparation and bioevaluation of 99mTc-carbonyl complex of 5-hydroxy tryptamine derivative. Appl Rad Isot 64(8):888–892

    Article  CAS  Google Scholar 

  20. Erfani M, Hassanzadeh L, Ebrahimi SES, Shafiei M (2012) Synthesis and biological evaluation of 99mTc (CO)3-OH-PP-CS2 for brain receptor imaging Iran. J Nucl Med 20(1):25–31

    CAS  Google Scholar 

  21. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA (1998) A novel organometallic aqua-complex of technetium for the labeling of biomolecules: synthesis of [99mTc(CO)3(H2O)3]+ from [99mTcO4 ] in aqueous solution and its reaction with bifunctional ligands. J Am Chem Soc 120(31):7987–7988

    Article  CAS  Google Scholar 

  22. Sanad MH (2014) Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging. J Anal Sci Technol 5:23–28

    Article  Google Scholar 

  23. Motaleb MA, Ibrahem IT, Ayoub VR, Geneidi AS (2016) Preparation and biological evaluation of 99mTc-ropinirole as a novel radiopharmaceutical for brain imaging. J Label Compd Radiopharm 59(2):147–152

    Article  CAS  Google Scholar 

  24. SakrTM Motaleb MA, Ibrahim IT (2012) 99mTc-meropenem as a potential SPECT imaging probe for tumor hypoxia. J Radioanal Nucl Chem 292(2):705–710

    Article  Google Scholar 

  25. Amin A, Sanad MH, Abd-Elhaliem S (2013) Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 55:624–628

    Article  CAS  Google Scholar 

  26. James C (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  Google Scholar 

  27. John L (1998) Investigating the biological functions of DNA topoisomerases in eukaryotic cells Biochim. Biophys Acta 1400:63–81

    Google Scholar 

  28. Joshi PP, Moradipour M, Nerkar AG, Sawant SD (2012) AMPA receptor: a review. Int J Pharm Pharm Sci 4(3):39–44

    CAS  Google Scholar 

  29. Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’leary DH, Watson AD, Ganey MV, Morgan RA, Williams SJ (1989) Characterization of technetium-99m-L, L-ECD for brain perfusion imaging. Part 1: pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med 30:1892–1901

    CAS  Google Scholar 

  30. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA, Chaplin SB (1987) Technetium-99m d, l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202

    CAS  Google Scholar 

  31. Motaleb MA, El-Kolaly MT, Rashed HM, Abd El-Bary A (2011) Novel radioiodinated sibutramine and fluoxetine as models for brain imaging. J Radioanal Nucl Chem 289:915–921

    Article  CAS  Google Scholar 

  32. Sanad MH, Ibrahim I (2013) Radiodiagnosis of peptic ulcer with Technetium-99m-pantoprazole. J Radiochem 55:341–345

    Article  CAS  Google Scholar 

  33. Sanad MH (2013) Labeling of omeprazole with Technetium-99m for diagnosis of stomach. J Radiochem 55:605–609

    Article  CAS  Google Scholar 

  34. Sanad MH, Ibrahim I (2015) Radiodiagnosis of peptic ulcer with Technetium-99m labeled rabeprazole. J Radiochem 57:425–430

    Article  CAS  Google Scholar 

  35. Moustapha M, Motaleb M, Sanad MH (2016) Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptor-mediated cardiac imaging. J Radioanal Nucl Chem 309:511–516

    CAS  Google Scholar 

  36. Motaleb MA, Adli ASA, El-Tawoosy M, Sanad MH, AbdAllahb M (2016) An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J Label Compd Radiopharm 59:157–163

    Article  CAS  Google Scholar 

  37. Sanad MH, Sallam KhM, Marzook FA, Abd-Elhaliem SM (2016) Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J Label Compd Radiopharm 59:484–491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Sanad.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed. All authors declared no studies with human subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.H., Sakr, T.M., Abdel-Hamid, W.H.A. et al. In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors. J Radioanal Nucl Chem 314, 1505–1515 (2017). https://doi.org/10.1007/s10967-016-5120-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5120-y

Keywords

Navigation