Skip to main content
Log in

Novel radioiodinated sibutramine and fluoxetine as models for brain imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Brain imaging is a process which allows scientists and physicians to view and monitor the areas of the brain which allow diagnosis and following up different abnormalities in the brain. The aim of this study was to develop potential radiopharmaceuticals for the non-invasive brain imaging. Sibutramine and fluoxetine (two drugs that have the ability to cross blood–brain barrier) were successfully labeled with 125I via direct electrophilic substitution reaction at ambient temperature. The reaction parameters studied were substrate concentration, oxidizing agent concentration, pH of the reaction mixture, reaction temperature, reaction time and in vitro stability of the iodocompounds. The iodocompounds gave maximum labeling yield of 92 ± 2.77 and 93 ± 2.1%, respectively, and maintained stability throughout working period (24 h). Biodistribution studies showed that maximum in vivo uptake of the iodocompounds in the brain was 5.7 ± 0.19 and 6.14 ± 0.26% injected activity/g tissue organ, respectively, at 15 and 5 min post-injection, whereas the clearance from the mice appeared to proceed via the hepatobiliary pathway. Brain uptake of 125I-sibutramine and 125I-fluoxetine is higher than that of 99mTc-ECD and 99mTc-HMPAO (currently used radiopharmaceuticals for brain imaging) and so radioiodinated sibutramine and fluoxetine could be used instead of 99mTc-ECD and 99mTc-HMPAO for brain SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Devous MD Sr (2002) Brain mapping: the methods, 2nd edn. Academic Press, New York, pp 513–536

    Book  Google Scholar 

  2. Catafau AM (2001) J Nucl Med 42:259–271

    CAS  Google Scholar 

  3. Devous MD Sr (2002) In: Mazziotta JC, Toga AW (eds) Brain mapping: the methods (2nd edn). Academic Press, San Diego, pp 513–533

  4. Lee B, Newberg A (2005) NeuroRx 2:372–383

    Article  Google Scholar 

  5. Bonte FJ, Devous MD (2003) In: Sandler MP, Coleman RE, Patton JA, Wackers FJTh, Gottschalk A (eds) Diagnostic nuclear medicine (4th edn). Lippincott Williams and Wilkins, Philadelphia, pp 757–782

  6. Devous MD Sr (1998) In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment (2nd edn). McGraw-Hill, New York, pp 631–649

  7. Brooks DJ (2005) NeuroRx 2:226–236

    Article  Google Scholar 

  8. Eckert T, Eidelberg D (2005) NeuroRx 2:361–371

    Article  Google Scholar 

  9. Heinz A, Jones DW, Raedler T, Coppola R, Knable MB, Weinberger DR (2000) Nucl Med Biol 27:677–682

    Article  CAS  Google Scholar 

  10. Dickerson BC, Sperling RA (2005) NeuroRx 2:348–360

    Article  Google Scholar 

  11. Bammer R, Skare S, Newbould R, Liu C, Thijs V, Ropele S, Clayton DB, Krueger G, Moseley ME, Glover GH (2005) NeuroRx 2:167–196

    Article  Google Scholar 

  12. Kuzniecky RI (2005) NeuroRx 2:384–393

    Article  Google Scholar 

  13. Ogasawara K, Ogawa A, Ezura M, Konno H, Suzuki M, Yoshimoto T (2001) Am J Neuroradiol 22:48–53

    CAS  Google Scholar 

  14. Chang C, Shiau Y, Wang J, Ho S, Kao A (2002) Ann Rheum Dis 61:774–778

    Article  CAS  Google Scholar 

  15. Bonte FJ, Hynan L, Harris TS, White CL (2010) J Mol Imaging 2011:ID 409101

  16. Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’Leary DH, Watson AD, Ganey MV, Morgan RA, Williams SJ (1989) J Nucl Med 30:1892–1901

    CAS  Google Scholar 

  17. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA, Chaplin SB (1987) J Nucl Med 28:191–202

    CAS  Google Scholar 

  18. “New Drugs” (2002) Australian Prescriber 25:No 1

  19. Messiha FS (1993) Neurosci Biobehav Rev 17:385–396

    Article  CAS  Google Scholar 

  20. Greenwood N, Earnshaw A (1997) Chemistry of the elements. Butterworth Heinemann, Oxford

    Google Scholar 

  21. Liu FEI, Youfeng HE, Luo Z (2004) IAEA, Austria, Technical Reports Series No 426, pp 37–52

  22. Rhodes BA (1974) Semin J Nucl Med 4:281

    Article  CAS  Google Scholar 

  23. Adam MJ, Wilbur DS (2005) Chem Soc Rev 34:153–163

    Article  CAS  Google Scholar 

  24. El-Azony KM (2010) J Radioanal Nucl Chem 285:315–320

    Article  CAS  Google Scholar 

  25. Tolmachev V, Bruskin A, Sivaev I, Lundqvist H, Sjöberg S (2002) Radiochem Acta 90:229–235

    Article  CAS  Google Scholar 

  26. Puttaswamy, Sukhdev A, Shubha JP (2009) J Mol Catal A 310:24

    Article  CAS  Google Scholar 

  27. Puttaswamy, Vaz N (2003) Transit Met Chem 28(4):409–417

    Article  Google Scholar 

  28. Ramalingaiah, Jagadeesh RV, Puttaswamy (2007) J Mol Catal A 265:70

    Article  CAS  Google Scholar 

  29. Motaleb MA, Moustapha ME, Ibrahim IT (2011) J Radioanal Nucl Chem. doi:10.1007/s10967-011-1069-z

  30. Suhara T, Sudo Y, Yoshida K, Okubo Y, Fukuda H, Obata T, Yoshikawa K, Suzuki K, Sasaki Y (1998) Lancet 351:332–335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Motaleb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motaleb, M.A., El-Kolaly, M.T., Rashed, H.M. et al. Novel radioiodinated sibutramine and fluoxetine as models for brain imaging. J Radioanal Nucl Chem 289, 915–921 (2011). https://doi.org/10.1007/s10967-011-1182-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1182-z

Keywords

Navigation