Skip to main content
Log in

69mZn-containing radiopharmaceuticals: a novel approach to molecular design

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

69mZn was produced and separated for medical applications. Possibilities and perspectives for production of radiopharmaceuticals based on 69mZn containing derivatives of thiazine, thiazoline and thiourea are considered. Each one of the latters is a zinc chelator and a nitric oxide synthase (NOS) effector at the same time. Cytotoxic effect of NOS activator and NOS inhibitors are shown in experiments with HL-60, K-562 and MOLT-4 cell lines and in bone marrow cells of the acute B-lymphoblastic leukemia patients. Some of those compounds are worthy to get selected for further application as radiopharmaceuticals including their antitumor speciements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De la Iglesia S, Lypez-Jorge CE, Gymez-Casares MT, Castellano AL, Cabrera PM, Brito JL, Cabrera AS, Labarta TM (2009) Induction of apoptosis in leukemic cell lines treated with captopril, trandolapril and losartan: a new role in the treatment of leukemia for these agents. Leuk Res 33:810–816

    Article  Google Scholar 

  2. Orlova MA, Trofimova TP, Shatalov OA (2013) Fullerene nanoparticles operating the apoptosis and cell proliferation processes in normal and malignant cells. Der Pharmacia Lett 5:99–139

    CAS  Google Scholar 

  3. Wang J, Chen C, Li B (2006) Antioxidative function and biodistribution of [Gd@C82(OH)22] n nanoparticles in tumor-bearing mice. Biochem Pharmacol 71:872–881

    Article  CAS  Google Scholar 

  4. Chen C, Xing G, Wang J (2005) Multihydroxylated [Gd@C82(OH)22] n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057

    Article  CAS  Google Scholar 

  5. Pu Z, Yang J, Kong X (2003) Cross-section measurements for (n, 2n), (n, p) and (n, n′α) reactions on gallium isotopes in the neutron energy range of 13.5–14.6 MeV. Appl Radiat Isotop 58:723–726

    Article  CAS  Google Scholar 

  6. Yagi M, Kondo K (1977) Preparation of carrier-free Zn-69 m by the 71 Ga(γ, pn) reaction. Radiochem Radioanal Lett 30:173–178

    CAS  Google Scholar 

  7. Demichelis F, Guidetti M, Miraldi E, Oldano C (1968) Isomeric cross-section ratio for reactions producing the isomeric pairs Zn-69 and Zn-69m, Zn-71 and Zn-71m. Il Nuovo Cimento 58:177–190

    Article  CAS  Google Scholar 

  8. Cohen IM, Guevara SR, Arribere MA, Iljadica MCF, Kestelman AJ, Ohaco RA, Segovia MS, Yunes AN (2005) Determination of nuclear constant of reactions induced on zinc by short irradiations with the epithermal and fast component of reactor neutron spectrum. Radiochim Acta 93:543–546

    CAS  Google Scholar 

  9. Maret W (2012) New perpectives of zinc coordination environments in proteins. J Inorg Biochem 111:110–116

    Article  CAS  Google Scholar 

  10. Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418

    Article  CAS  Google Scholar 

  11. Orlova MA, Orlov AP (2011) Role of zinc in an organism and its influence on processes leading to apoptosis. Br J Med Med Res 1:239–305

    Article  Google Scholar 

  12. Lee Y, Lin Y, Lima C (2014) Factors controlling the role of zn and reactivity of zn-bound cysteines in proteins: application to drug target discovery. J Chin Chem Soc 61:142–150

    Article  CAS  Google Scholar 

  13. Dudev T, Lim CJ (2003) Metal binding and selectivity in zinc proteins. Chin Chem Soc 50:1093–1102

    Article  CAS  Google Scholar 

  14. Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein and zinc proteins. Proc Natl Acad Sci USA 95:3489–3494

    Article  CAS  Google Scholar 

  15. Auld DS (2009) The ins and outs of biological zinc sites. Biometals 22:141–148

    Article  CAS  Google Scholar 

  16. Brandao MM, Soares E, Salles TSI, Saad STO (2000) Expression of inducible nitric oxide synthase is increased in acute myeloid leukemia. Acta Haematol 106:95–99

    Article  Google Scholar 

  17. Li CQ, Wogan GN (2005) Nitric oxide as a modulator of apoptosis. Cancer Lett 226:1–15

    Article  CAS  Google Scholar 

  18. Sawa T, Arimoto H, Akaike T (2010) Regulation of redox signaling involving chemical conjugation of protein thiols by nitric oxide and electrophiles. Bioconjug Chem 21:1121–1135

    Article  CAS  Google Scholar 

  19. Rapoport RM (2014) Nitric oxide synthase inhibition and endothelian-1-dependent arterial pressure elevation. Front Pharmacol 5(57):1–8

    CAS  Google Scholar 

  20. Mukherjee P, Cinelli MA, Kang S, Silverman RB (2014) Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 43:6814–6838

    Article  CAS  Google Scholar 

  21. Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, Tsiamis E, Stefanadis C (2014) Endothelian dysfunction in conduit arteries and in microcirculation. Novek therautic approaches. Pharmacol Ther 144:253–267

    Article  CAS  Google Scholar 

  22. Tsutsui M, Tanimoto A, Tamura M, Mukae H, Yanagihara N, Shimokawa H, Otsuji Y (2015) Significance of nitric oxide synthases: lessons from triple nitric oxide synthases null mice. J Pharmacol Sci 127:42–52

    Article  CAS  Google Scholar 

  23. Wallerath T, Gath I, Aulizky WE, Wallerath T, Gath I, Aulitzky WE (1997) Identification of the synthase isoforms expressed in human neutrophil granulocetes, megakaryocetes and platelets. Thromb Haemost 77:163–167

    CAS  Google Scholar 

  24. Baker M (2012) Cancer stem cells tracked. Nature 488:13–14

    Article  CAS  Google Scholar 

  25. Tan BT, Park CY, Weissman IL (2006) The cancer stem cell hypothesis: a work in progress. Lab Invest 86:1203–1207

    Article  CAS  Google Scholar 

  26. Cai H, McNally JS, Weber M, Harrison DG (2004) Oscillatory shear stress upregulation of endothelial nitric oxide synthase requires intracellular hydrogen peroxide and CaMKII. J Mol Cell Cardiol 37:121–125

    Article  CAS  Google Scholar 

  27. Torres-Garcia P, Vinuelas-Zahinos E, Luna-Giles F, Espino J, Barros-Garcia FJ (2011) Zinc(II) complexes with novel 1,3-thiazine/pyrazole derivative ligands: synthesis, structural characterization and effect of coordination on the phagocytic activity of human neutrophils. Polyhedron 30:2627–2636

    Article  CAS  Google Scholar 

  28. Proshin AN, Trofimova TP, Bachurin SO (2011) New tetrasubstituted thioureas containing the 1-iminoethyl moiety. Russ Chem Bull 60:2432–2436

    Article  CAS  Google Scholar 

  29. Schoberl A, Magosch KH (1970) Acylierung und alkylierung von 2-amino-penthiazolin. Liebigs Ann Chem 742:74–84

    Article  Google Scholar 

  30. Trofimova TP, Zefirova ON, Mandrugin AA, Fedoseev VM, Peregud DI, Onufriev MN, Gulyaeva NV, Proskuryakov SY (2008) Synthesis and study of NOS-inhibiting activity of 2-N-acylamino-5,6-dihydro-4H-1,3-thiazine. Mosc Univ Chem Bull 63:274–277

    Article  Google Scholar 

  31. Trofimova TP, Pushin AN, Proshin AN, Stash AI, Mandrugin AA, Fedoseev VM, Proskuryakov SY (2007) Synthesis of new 2-amino-5-hydroxymethyl-2-thiazolines. Chem Heterocycl Comp 43:370–376

    Article  CAS  Google Scholar 

  32. Levtsova AA, Chupakhin VI, Proshin AN, Pushin AN, Trofimova TP, Zefirova ON (2007) Design of potential NO-synthase inhibitors on the basis of 2-amino-5,6-dihydro-4H-1,3-thiazine derivatives. Mosc Univ Chem Bull 62:243–245

    Article  Google Scholar 

  33. Orlova MA, Trofimova TP, Nikulin SV, Orlov AP (2016) Relationship between NO-synthase inhibitory activity of N-, S-containing heterocycles with their radioprotective and antileukemic properties. Vestn Mosk Univ. Ser. Khimiya. 57:269–275 (Trans.: Mosc Univ Chem Bull. 71: In Press)

  34. Orlova MA, Osipova EYu, Roumiantsev SA (2012) Effect of 67Zn-nanoparticles on leukemic cells and normal lymphocytes. Br J Med Med Res 2:21–30

    Article  Google Scholar 

  35. Veerman AJP, Pieters R (1990) Drug sensitivity assays in leukemia and lymphoma. Br J Haematol 74:381–383

    Article  CAS  Google Scholar 

  36. Kaspers GJL, Pieters R, Twentyman PR, Wiesenthal LM, Veerman AJP (1993) Drug resistance in leukemia and lymphoma I. Harwood Academic Publishers, Chur

    Google Scholar 

  37. Khokhlova TD, Mandrugin AA, Trofimova TP, Fedoseev VM (2010) Adsorption of NO synthase inhibitor on dehydroxylated silica. Protect Met Phys Chem Surf 46:427–429

    Article  CAS  Google Scholar 

  38. Stone JR, Sands RH, Dunham WR, Marletta MA (1995) Electron paramagnetic resonance evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun 207:575–577

    Article  Google Scholar 

  39. Lin ZD, Zeng W (2007) Bis(2-aminopyrimidine-N1)dichloridozinc(II). Acta Crystallogr E 63:m1597

    Article  CAS  Google Scholar 

  40. Filimonova MV, Shevchenko LI, Trofimova TP, Makarchuk VM, Shevchuk AS, Lushnikova GA (2014) About mechanism of radioprotective action of NO-synthases inhibitors. Rad Biol Radioecol (Russ) 54:500–506

    CAS  Google Scholar 

  41. Rana K, Reinhart-King CA, King MR (2012) Inducing apoptosis in rolling cancer cells: a combined therapy with aspirin and immobilized TRAIL and E-selectin. Mol Pharm 9:2219–2227

    CAS  Google Scholar 

  42. Morgan G (2005) Could vitamin S (salicylate) protect against childhood cancer? Med Hypotheses 64:661–664

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grant of RFBR 16-08-00139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Orlova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, M.A., Trofimova, T.P., Aliev, R.A. et al. 69mZn-containing radiopharmaceuticals: a novel approach to molecular design. J Radioanal Nucl Chem 311, 1177–1183 (2017). https://doi.org/10.1007/s10967-016-5076-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5076-y

Keywords

Navigation