Skip to main content
Log in

Preparation of a radon-free thoron source for a thoron calibration chamber

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

During long-term radon/thoron surveys, solid-state nuclear track detectors (SSNTDs) are commonly used. For the application of these integral devices, it is important to solve the commensurate calibration. At the calibration process, radon can be interfering with thoron; therefore, radon-free thoron atmosphere is required for the accurate calibration. In this study, radon-free thoron source with a high emanation capability was prepared by chemical separation of 228Ac. Based on the results of this and the previously performed experiments, a method combines precipitation with FeCl3 and embedding into ceramic matrix containing low feldspar content and heat treatment on 200 °C has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Milic G (2010) The concentrations and exposure doses of radon and thoron in residences of the rural areas of Kosovo and Metohija. Radiat Meas 45:118–121

    Article  CAS  Google Scholar 

  2. Virk HS, Sharma N (2000) Indoor radon/thoron survey report from Hamirpur and Una districts, Himachal Predesh, India. Appl Radiat Isotopes 52:137–141

    Article  CAS  Google Scholar 

  3. Guizhi Z, Detao X, Yongjun X (2008) Survey of radon and thoron concentrations in two types of countryside dwellings. Radiat Meas 43:479–481

    Article  Google Scholar 

  4. Ramola RC, Negi MS, Choubey VM (2005) Radon and thoron monitoring in the environment of Kumaun Himalayas: survey and outcomes. J Environ Radioactiv 79:85–92

    Article  CAS  Google Scholar 

  5. Sorimachi A, Takahashi H, Tokonami S (2009) Influence of the presence of humidity, ambient aerosols and thoron on the detection responses of electret radon monitors. Radiat Meas 44:111–115

    Article  CAS  Google Scholar 

  6. Tokonami S, Yang M, Sanada T (2001) Contribution from thoron on the response of passive radon detectors. Health Phys 80:612–615

    Article  CAS  Google Scholar 

  7. Szelier G, Somlai J, Ishikawa T, Omori Y, Mishra R, Sapra BK, Mayya YS, Tokonami S, Csordás A, Kovács T (2012) Preliminary results from an indoor radon thoron survey in Hungary. Radiat Prot Dosim 152:243–246

    Article  Google Scholar 

  8. Kávási N, Cs Németh, Kovács T, Tokonami S, Jobbágy V, Várhegyi A, Gorjánácz Z, Vígh T, Somlai J (2007) Radon and thoron parallel measurements in Hungary. Radiat Prot Dosim 123:250–253

    Article  Google Scholar 

  9. Kovács T (2010) Thoron measurements in Hungary. Radiat Prot Dosim 141:328–334

    Article  Google Scholar 

  10. Rao NS, Sengupta D (2010) Seasonal levels of radon and thoron in the dwellings along southern coastal Orissa, Eastern India. Appl Radiat Isotopes 68:28–32

    Article  Google Scholar 

  11. Németh CS, Tokonami S, Ishikawa T, Takahashi H, Zhuo W, Shimo M (2005) Measurements of radon, thoron and their progeny in a dwelling in Gifu prefecture, Japan. Int Congr Ser 1276:283–284

    Article  Google Scholar 

  12. Fábián F, Csordás A, Shahrokhi A, Somlai J, Kovács T (2014) Calibration of CR-39-based thoron progeny device. Radiat Prot Dosim 160:169–172

    Article  Google Scholar 

  13. Sorimachi A, Sahoo SK, Tokonami S (2009) Generation and control of thoron emanated from lantern mantles. Rev Sci Instrum DOI 10(1063/1):3039413

    Google Scholar 

  14. Gargioni E, Honig A, Röttger A (2003) Development of a calibration facility for measurements of the thoron activity concentration. Nucl Instrum Methods Phys Res, Sect A 506:166–172

    Article  CAS  Google Scholar 

  15. Cardellini F, Capogni M, Quintieri L (2016) The Italian thoron reference measurement system. Fourth International Conference on Radiation and Applications in Various Fields of Research, May 23-27, 2016, Nis, Serbia, Book of Abstracts, ISBN: 978-86-6125-160-3

  16. Jobbágy V, Burghele BD (2012) Solid thoron source preparation in a porous mineral matrix. Radiat Prot Dosim 141:419–424

    Google Scholar 

  17. Csordás A, Fábián F, Horváth M, Hegedűs M, Somlai J, Kovács T (2015) Preparation and characterization of ceramic-based thoron sources for thoron calibration chamber. Radiat Prot Dosim 167:151–154

    Article  Google Scholar 

  18. Tokonami S, Takahashi H, Kobayashi Y, Zhuo W, Hulber E (2005) Up-to-date radon-thoron discriminative detector for a large scale survey. Rev Sci Instrum 76:113505

    Article  Google Scholar 

  19. Stojanovska Z, Bossew P, Tokonami S, Zunic ZS, Bochiccio F, Boev B, Ristova M, Januseski J (2013) National survey of indoor thoron concentration in FYR of Macedonia (continental Europe–Balkan region). Radiat Meas 49:57–66

    Article  CAS  Google Scholar 

  20. Nour S, El-Sharkawy A, Burnett WC, Horwitz EP (2004) Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl Radiat Isot 61:1173–1178

    Article  CAS  Google Scholar 

  21. Alhassanieh O, Abdul-Hadi A, Ghafar M, Aba A (1999) Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series. Appl Radiat Isot 51:493–498

    Article  CAS  Google Scholar 

  22. Szeglowski Z, Kubica B (1991) Extraction of actinium with di(2-ethylhexyl)phosphoric acid from hydrochloric and nitric acid solutions. J Radioanal Nucl Chem 153(1):67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kovács.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fábián, F., Csordás, A., Sas, Z. et al. Preparation of a radon-free thoron source for a thoron calibration chamber. J Radioanal Nucl Chem 311, 1169–1175 (2017). https://doi.org/10.1007/s10967-016-4944-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4944-9

Keywords

Navigation