Skip to main content
Log in

Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Three types of graphene sheets (GS) were decorated by chemical oxidation, electrolysis and ball-milling, respectively. These oxidized samples were characterized using SEM, XRD, Raman, FT-IR and XPS, and then were employed to enrich U(VI) from aqueous solutions as a function of pH, contact time and initial concentration of U(VI). These results displayed that the quantities and types of oxygen-functional groups were extremely different through these methods, which highly determined the adsorption capacity of graphene oxide to uranium. This work may provide some helpful information to optimize these fabrication processes and improve the adsorption ability of GS to uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Kholmanov IN, Magnuson CW, Piner R, Kim JY, Aliev AE, Tan C, Kim TY, Zakhidov AA, Sberveglieri G, Baughman RH, Ruoff RS (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059

    Article  CAS  Google Scholar 

  3. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li L-J (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339

    Article  CAS  Google Scholar 

  4. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    Article  CAS  Google Scholar 

  5. Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N (2014) The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels. J Radioanal Nucl Chem 303:1835–1842

    Google Scholar 

  6. Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, Mahurin SM (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10:459–464

    Article  CAS  Google Scholar 

  7. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279

    Article  CAS  Google Scholar 

  8. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    Article  CAS  Google Scholar 

  9. Song W, Shao D, Lu S, Wang X (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299

    Article  CAS  Google Scholar 

  10. Shao D, Li J, Wang X (2014) Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci China Chem 57:1449–1458

    Article  CAS  Google Scholar 

  11. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  Google Scholar 

  12. Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6027

    Article  CAS  Google Scholar 

  13. Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium (VI). Appl Surf Sci 320:10–20

    Article  CAS  Google Scholar 

  14. Wang CL, Li Y, Liu CL (2015) Sorption of uranium from aqueous solutions with graphene oxide. J Radioanal Nucl Chem 304:1017–1025

    Article  CAS  Google Scholar 

  15. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  16. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068

    Article  CAS  Google Scholar 

  17. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023

    Article  CAS  Google Scholar 

  18. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  19. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  20. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  21. Zhang L, Li X, Huang Y, Ma Y, Wan X, Chen Y (2010) Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon 48:2367–2371

    Article  CAS  Google Scholar 

  22. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  23. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Mullen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091

    Article  CAS  Google Scholar 

  24. Parvez K, Li R, Puniredd SR, Hernandez Y, Hinkel F, Wang S, Feng X, Müllen K (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7:3598–3606

    Article  CAS  Google Scholar 

  25. Cooper AJ, Wilson NR, Kinloch IA, Dryfe RAW (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350

    Article  CAS  Google Scholar 

  26. Pu NW, Wang CA, Sung Y, Liu YM, Ger MD (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989

    Article  CAS  Google Scholar 

  27. Wang X, Fulvio PF, Baker GA, Veith GM, Unocic RR, Mahurin SM, Chi M, Dai S (2010) Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem Commun 46:4487–4489

    Article  CAS  Google Scholar 

  28. Vadukumpully S, Paul J, Valiyaveettil S (2009) Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 47:3288–3294

    Article  CAS  Google Scholar 

  29. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  30. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891

    Article  CAS  Google Scholar 

  31. Whitby RL (2014) Chemical control of graphene architecture: tailoring shape and properties. ACS Nano 8:9733–9754

    Article  CAS  Google Scholar 

  32. Damm C, Nacken TJ, Peukert W (2015) Quantitative evaluation of delamination of graphite by wet media milling. Carbon 81:284–294

    Article  CAS  Google Scholar 

  33. León V, Rodriguez AM, Prieto P, Prato M, Vázquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8:563–571

    Article  Google Scholar 

  34. Tao X, Wang X, Li Z, Zhou S (2015) Ultralow temperature synthesis and improved adsorption performance of graphene oxide nanosheets. Appl Surf Sci 324:363–368

    Article  CAS  Google Scholar 

  35. Chen J, Li Y, Huang L, Li C, Shi G (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81:826–834

    Article  CAS  Google Scholar 

  36. De la Fuente Salas IM, Sudhakar YN, Selvakumar M (2014) High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes. Appl Surf Sci 296:195–203

    Article  Google Scholar 

  37. Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Wook Chang D, Dai L, Baek JB (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109:5588–5593

    Article  CAS  Google Scholar 

  38. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  Google Scholar 

  39. Wang Y, Wang Z, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2015) Uranium (VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J Radioanal Nucl Chem 210:539–546

    Google Scholar 

  40. Jabari Seresht R, Jahanshahi M, Rashidi A, Ghoreyshi AA (2013) Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl Surf Sci 276:672–681

    Article  CAS  Google Scholar 

  41. Li F, Yang J, Liao J, Li S, Liao J, Prabhu R, Williams LN, Yang Y, Tang J, Liu N (2015) Direct synthesis of carbon-based microtubes by hydrothermal carbonization of microorganism cells. Chem Eng J 276:322–330

    Article  CAS  Google Scholar 

  42. Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(vi) from aqueous solutions. Polym Chem 5:6207–6215

    Article  CAS  Google Scholar 

  43. Pan N, Deng J, Guan D, Jin Y, Xia C (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483

    Article  CAS  Google Scholar 

  44. Fan QH, Li P, Chen YF, Wu WS (2011) Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution. J Hazard Mater 192:1851–1859

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 91226108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, Y., Liao, J. et al. Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling. J Radioanal Nucl Chem 308, 1095–1102 (2016). https://doi.org/10.1007/s10967-015-4598-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4598-z

Keywords

Navigation