Skip to main content
Log in

Low-dose gamma irradiation induces water activity, leaf K+/Na+, glycine betaine, antioxidant enzyme activity and reduces lipid peroxidation and protease activity to enhance salt tolerance in pigeonpea [Cajanus cajan (L.) Millsp]

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Soil salinity is a major constraint that limits legume productivity. The present study evaluates the physiological and biochemical basis of radiation affect on salt tolerance response of pigeonpea. Seed gamma irradiation, in general, at 1.92 (control), 5.86 (80 mM) and 8.02 dSm−1 (100 mM) soil electrical conductivity (NaCl stress), enhanced seedling establishment, plant growth, carbon metabolism and gas exchange characteristics such as net photosynthesis, stomatal conductance and transpiration rate. Further, an improvement in salt tolerance response of gamma irradiated (<10 Gy) pigeonpea was related to high seed water activity and leaf K+/Na+, glycine betaine, membrane stability index and enzymic antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EC:

Electrical conductivity

Aw:

Water activity

MSI:

Membrane stability index

SOD:

Superoxide dismutase

CAT:

Catalase

POX:

Peroxidase

Pn:

Photosynthetic rate

Gs:

Stomatal conductance

E:

Transpiration rate

References

  1. Singh B, Singh BK (2011) Nodulation characteristics, nodule nitrogen and carbon dioxide fixation in pigeon pea as affected by nitrogen. Int J Veg Sci 17:224–282

    Article  Google Scholar 

  2. Munns R (1993) Physiological processes limiting plant growth in saline soil: some dogmas and hypothesis. Plant, Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  3. Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  4. Oncel I, Keles Y (2002) Tuz stress altindaki bugday genotiplerinde buyume, pigment icerigive coizunur madde kompozisyonunda digismeler. CU Fen-Edebiyat Fakultesi Fen Bilimleri Dergisi 23:8–16

    Google Scholar 

  5. Koca H, Bor M, Ozdemir F (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  6. Celik O, Atak Ç (2012) The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk J Biol 36:339–356

    CAS  Google Scholar 

  7. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  8. Tewari K, Kumari S, Vinutha T, Singh B, Dahuja A (2014) Gamma irradiation induces reduction in the off flavour generation in soybean through enhancement of its antioxidant potential. J Radioanal Nucl Chem 302:3803–3809

    Google Scholar 

  9. Ahuja S, Kumar M, Kumar P, Gupta VK, Singhal RK, Yadav Singh B (2014) Metabolic and biochemical changes caused by gamma irradiation in plants. J Radioanal Nucl Chem 299:2969–2975

    Google Scholar 

  10. Krishnan V, Singh A, Vinutha T, Singh B, Dahuja A, Rai R, Sachdev A (2015) Low gamma irradiation effects on protein profile, solubility, oxidation, scavenger ability and bioavailability of essential minerals in black and yellow Indian soybean (Glycine max L.) varieties. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4193-3

    Google Scholar 

  11. Stadler LJ (1928) Genetic effects of X-rays in maize. Proceedings Nat Acad Sci USA 14(1):69

    Article  CAS  Google Scholar 

  12. Dogbevi MK, Vachon C, Lacroix M (2000) Physicochemical properties of dry red kidney bean proteins and natural micro-flora as affected by gamma irradiation. J Food Sci 64:540–542

    Article  Google Scholar 

  13. Singh B, Datta PS (2010) Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiat Phys Chem 79:139–143

    Article  CAS  Google Scholar 

  14. Al-Kaisey MT, Alwan AKH, Mohammad MH, Saeed AH (2003) Effect of gamma irradiation on antinutritional factors in broad bean. Radiat Phys Chem 67(3–4):493–496

    Article  CAS  Google Scholar 

  15. Qi W, Zhang L, Xu H, Wang L, Jiao Z (2014) Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochem Biophys Res Commun 25(450):1010–1015. doi:10.1016/j.bbrc.2014.06.086

    Article  Google Scholar 

  16. International Seed Testing Association (1985) International rules for seed testing. Seed Sci Technol 13:356–513

    Google Scholar 

  17. Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria. Crop Sci 13(6):630–633

    Article  Google Scholar 

  18. Radford PJ (1967) Growth analysis formulae-their use and abuse. Crop Sci 7(3):171–175

    Article  Google Scholar 

  19. Hiscox JT, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    Article  CAS  Google Scholar 

  20. Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  21. Vetucci CW, Roos EE (1993) Theoretical basis of protocols for seed storage II. The influence of temperature on optimum moisture levels. Seed Sci Res 3:201–213

    Google Scholar 

  22. Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  23. Nieri B, Canino S, Versace R, Alpi A (1998) Purification and characterization of an endoprotease from alfalfa senescent leaves. Phytochem 49(3):643–649

    Article  CAS  Google Scholar 

  24. Dhindsa RS, Pamela Plumb-Dhindsa, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  25. Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutase in narrow leaf lupins. Ann Bot 84:543–547

    Article  CAS  Google Scholar 

  26. Castillo FI, Penel I, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Plant Physiol 74:846–851

    Article  CAS  Google Scholar 

  27. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  28. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Lowa State University Press, Ames, p 480

    Google Scholar 

  29. Ahuja S, Malhotra PK, Bhatia VK, Prasad R (2008) Statistical package for agricultural research (SPAR 2.0). J Ind Soc Agric Stat 61:65–74

    Google Scholar 

  30. Abdel-Hady MS, Okasha EM, Soliman SSA, Talaat M (2008) Effect of gamma radiation and gibberellic acid on germination and alkaloid production in Atropa belladonna. Aust J Basic Appl Sci 2:401–405

    CAS  Google Scholar 

  31. Ahuja S (2014) Studies on physiological and biochemical changes induced by gamma irradiation in groundnut. Doctorate Thesis submitted to the Department of Biochemistry, Kurukshetra University, Kurukshetra pp 129 + xxii

  32. Mehetre SS, Mahajan CR, Dhumal PM (1994) Effect of diff erent doses of gamma irradiation on germination and survival of soybean. Soybean Gen Newslett 21:108–112

    Google Scholar 

  33. Mitra AK, Singh RK, Narang H, Krishna M, Maurya SK (2004) Differential activation of signalling factors following low and high dose of gamma radiation in vivo. Int J Low Radiat. doi:10.1504/IJLR.2004.005435

    Google Scholar 

  34. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  35. Blum A (1985) Breeding crop varieties for stress environments. CRC Crit Rev Plant Sci 2:219–238

    Article  Google Scholar 

  36. Singh B, Ahuja S, Singhal RK, Venu Babu P (2014) Radiosensitivity studies and radiostability of ribulose-1,5 bis-carboxylase and gas exchange characteristics in wheat, garden pea, field pea, spinach, and okra. Water Air Soil Pollut. doi:10.1007/s11270-013-1815-7

    Google Scholar 

  37. Singh B, Ahuja S, Pandey R (1096) Singhal RK (2014) 14CO2 labeling: a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants. J Radioanal Nucl Chem 302:1315–1320. doi:10.1007/s7-014-3531-1

    Article  Google Scholar 

  38. Amuthavalli P, Sivasankaramoorthy S (2012) Effect of salt stress on the growth and photosynthetic pigments of pigeonpea. J Appl Pharma Sci 2:131–133

    Google Scholar 

  39. Mohammed AHMA, Mohammed HI, Zaki LM, Mogazy AM (2012) Pre-exposure to gamma ray eliminates the harmful effect of salinity on cowpea plants. J Stress Physiol Biochem 8:199–217

    Google Scholar 

  40. Singh B, Ahuja S, Singhal RK, Venu Babu P (2013) Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. J Radioanal Nucl Chem 298(1):249–257

    Article  CAS  Google Scholar 

  41. Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  42. Agarwal R, Rane SS, Sainis JK (2008) Effects of 60Co γ radiation on thylakoid membrane functions in Anacystis nidulans. J Photochem Photobiol 91(1):9–19

    Article  CAS  Google Scholar 

  43. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in Plants. Curr Sci 86(3):407–421

    CAS  Google Scholar 

  44. Celik O, Atak C (2012) The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk J Biol 36:339–356

    CAS  Google Scholar 

  45. Goud PB, Kachole MS (2012) Antioxidant enzyme changes in neem, pigeonpea, mulberry leaves in two stages of maturity. Plant Signal Behav 7:1258–1262

    Article  CAS  Google Scholar 

  46. Demiral P, Turkan I (2004) Does exogenous glycine betaine affect antioxidative system of rice seedlings under NaCl treatment. J Plant Physiol 161:1089–1100

    Article  CAS  Google Scholar 

  47. Sahid MA, Ashraf MY, Pervez MA, Ahmed R, Balal RM, Sanchez FG (2013) Impact of salt stress on concentration of Na+, Cl+ and organic solutes concentration in pea cultivars. Pak J Bot 45:755–761

    Google Scholar 

  48. Makela P, Karkkainen J, Somersalo S (2000) Effect of glycine betaine on chloroplast ultrastructure, chlorophyll and protein content and RUBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Article  CAS  Google Scholar 

  49. Diaz-Zorita M, Fernandez-Cainigia MV, Grosso GA (2001) Application of foliar fertilizers containing glycine betaine improve wheat yields. J Agron Crop Sci 186:209–215

    Article  CAS  Google Scholar 

  50. Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Z Naturforsch 59:408–414

    CAS  Google Scholar 

  51. Wi SG, Chung BY, Kim JS (2007) Effects of gamma irradiation on morphological changes and biological responses in plants. Micron 38:553–564

    Article  CAS  Google Scholar 

  52. Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet and wild beet. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  53. Cho YS, Lee HS, Pai HS (2000) Expression patterns of diverse genes in response to gamma irirradiation in Nicotiana tabacum. J Plant Biol 43:82–87

    Article  CAS  Google Scholar 

  54. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York

    Google Scholar 

  55. Qadar A (1995) Potassium and sodium contents of shoot and laminae of rice cultivars and their sodicity tolerance. J Plant Nutr 18:2281–2290

    Article  CAS  Google Scholar 

  56. Rejili M, Telahigue Dalel, Lachiheb Belgacem, Mrabet Abdessalem, Ferchichi Ali (2008) Impact of gamma radiation and salinity on growth and K+/Na+balance in two populations of Medicago sativa (L.) cultivar Gabès. Prog Nat Sci 18:1095–1105

    Article  CAS  Google Scholar 

  57. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151. doi:10.3389/fpls.2014.00151

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Environmental Science and Head, Plant Physiology, Indian Agricultural Research Institute, New Delhi for providing instrument facility. The scholarship provided to the first author by the Indian Agricultural Research Institute for doctoral degree is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Sharma, V., Raje, R.S. et al. Low-dose gamma irradiation induces water activity, leaf K+/Na+, glycine betaine, antioxidant enzyme activity and reduces lipid peroxidation and protease activity to enhance salt tolerance in pigeonpea [Cajanus cajan (L.) Millsp]. J Radioanal Nucl Chem 308, 965–980 (2016). https://doi.org/10.1007/s10967-015-4596-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4596-1

Keywords

Navigation