Skip to main content
Log in

Sensing of 252Cf fission gamma rays using same-size glass detectors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Eight same-size Cherenkov detectors were tested through time-of-flight analysis with a tagged 252Cf source to investigate their relative efficiencies and integrated charge spectra. They were chosen to vary in density, refractive index and optical absorption. The results showed that detection efficiency of glass Cherenkov detectors increases with increasing density and decreasing optical absorption edge. Furthermore, the number of photoelectrons generated on the photocathode peaks at one photoelectron for all selected glass samples. The reported experimental results are useful for estimating the response of non-scintillating glass detectors to low energy gamma rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Annunziata MF (2003) Handbook of radioactivity analysis. Academic Press, San Diego

    Google Scholar 

  2. Sowerby BD (1971) Cherenkov detectors for low-energy gamma rays. Nucl Instrum Methods 97:145–149

    Article  CAS  Google Scholar 

  3. Lecoq P, Auffray E, Brunner S, Hillemanns H, Jarron P, Knapitsch A, Meyer T, Powolny F (2010) Factors influencing time resolution of scintillators and ways to improve them. IEEE Trans Nucl Sci 57:2411–2416

    Article  CAS  Google Scholar 

  4. Korpar S, Dolenec R, Krizan P, Pestotnik R, Stanovnik A (2011) Study of TOF PET using Cherenkov light. Nucl Instrum Methods A 654:532–538

    Article  CAS  Google Scholar 

  5. Anatoli A, Billercia MA (2011) Scintillation-Cherenkov detector and method for high energy X-ray cargo container imaging and industrial radiography. US Patent US 2011/0163236 A1

  6. Pang GG, Rowlands JA (2007) Cherenkov X-ray detector for portal imaging. US Patent US7297914 B2

  7. Iijima T, Adachi I, Dolenec R, Petelin A, Fujita K, Gorisek A, Hara K, Hayashi D, Ikado T, Kawai H, Korpar S, Kozakai Y, Krizan P, Kuratani A, Mazuka Y, Miyazawa Y, Nishida S, Nishizawa I, Ogawa S, Pestotnik R, Sumiyoshi T, Tabata M, Yamaoka M (2008) Studies of a proximity focusing RICH with aerogel radiator for future Belle upgrade. Nucl Instrum Methods A 595:92–95

    Article  CAS  Google Scholar 

  8. Cenci P, Anzivino G, Bucci F, Cassese A, Ciaranfi R, Collazuol G, Duk V, Iacopini E, Lamanna G, Lami S, Lenti M, Pepe M, Piandani R, Piccini M, Sergi A, Sozzi MS (2013) The ring imaging Cherenkov detector of the NA62 experiment at CERN. Nucl Instrum Methods A 732:342–345

    Article  CAS  Google Scholar 

  9. Iodice M, Cisbani E, Colilli S, Crateri R, Frullani S, Garibaldi F, Giuliani F, Gricia M, Lucentini M, Mostarda A, Pierangeli L, Santavenere F, Urciuoli GM, De Leo R, Lagamba L, Leone A, Perrino R, Kerhoas S, Lugol IC, Maeav B, Vernin P, Zaccarian A (1998) The CO2 gas Cherenkov detectors for the Jefferson Lab Hall—a spectrometer. Nucl Instrum Methods A 411:223–237

  10. Hampf D, Tluczykont M, Horns D (2013) Event reconstruction techniques for the wide-angle air Cherenkov detector HiSCORE. Nucl Instum Methods A 712:137–146

  11. Pestotnik R, Korpar S, Krizan P, Dolenec R (2008) Cherenkov detector of 90Sr on aerogel as radiator.Nucl Instrum Methods A 595:278–280

  12. Nishida S, Adachi I, Hamada N, Hara K, Iijima T, Iwata S, Kakuno H, Kawai H, Korpar S, Kriz^an Ogawa PS, Pestotnik R, Ŝantelj L, Seljak A, Sumiyoshi T, Tabata M, Tahirovic E, Yoshida K, Yusa Y (2015) Development of a 144-channel Hybrid Avalanche Photo-detector for Belle II ring-imaging Cherenkov counter with aerogel radiator. Nucl Instrum Methods A 787:59–63

  13. Sweany M, Bernstein A, Bowden N, Dazeley S, Svoboda R (2008) Special nuclear detection with water Cherenkov based detectors. IEEE NSS Conf. Record, N61-5:3372-3375. Dresden, Germany

  14. Dazeley S, Sweany M, Bernstein A (2012) SNM detection with an optimized Cherenkov neutron detector. Nucl Instrum Methods A 693:148–153

    Article  CAS  Google Scholar 

  15. Button-Shafer Churchill HW, Lichti RL, Novack DH (1976) Development of a large low-mass, water Cherenkov counter. Nucl Instrum Methods 137:29–40

    Article  Google Scholar 

  16. Bell ZW, Boatner LA (2010) Neutron detection via the Cherenkov effect. IEEE Trans Nucl Sci 57:3800–3806

  17. Grannis PD, Jaffe D, Marx MD (1981) Low cost glass Cherenkov detectors. Nucl Instum Methods 188:239–242

  18. Miyazaki Y, Shimizu S, Bianchin S, Djalali C, Gill D, Jiang J, Hasinoff M, Horie K, Igarashi Y, Imazato J, Ivashkin A, Kohl M, Narikawa R, Pywell R, Strauch S, Tabata M, Toyoda A, Yamazaki H, Yoshioka T (2015) Performance test of lead-glass counter for the J-PARC E36 experiment. Nucl Instrum Methods A 779:13–17

    Article  CAS  Google Scholar 

  19. Kobayashi M, Sugimoto S, Usuki U (2004) Radiation hardness of PbWO4 Cherenkov radiators heavily doped with trivalent rare-earth ions. Nucl Instrum Methods A 524:385–389

    Article  CAS  Google Scholar 

  20. Kocak F, Tapan I (2010) PbWO4 Cherenkov light contribution to Hamamatsu S81148 and zinc sulfide-silicon avalanche photodiodes signals. Nucl Instrum Methods A 617:398–399

    Article  CAS  Google Scholar 

  21. Kobayashi M, Sugimoto S, Yoshimira Y, Komatsubara TK, Mimori K, Omata K, Sekiguchi T, Tsunemi T, Yoshioka T, Tamagawa Y, Shirasaka H, Fujiwara T, Usiki Y, Ishii M (2002) A beam of PbWO4 Cherenkov radiators. Nucl Instrum Methods A 484:140–148

    Article  CAS  Google Scholar 

  22. Akchurin N, Berntzon L, Cardini A, Ferrari R, Gaudio G, Hauptman J, Kim H, Ra Rotonda L, Livan M, Meoni E, Paar H, Penzo A, Pinci D, Policicchio S, Popescu A, Susinno G, Roh Y, Vandelli W, Wigmans R (2007) Contribution of Cherenkoc light to the signals from lead tungstate crystals. Nucl Instrum Methods A 582:474–483

    Article  CAS  Google Scholar 

  23. Ayaz-Maierhafer B, Hayward JP, Bell ZW, Boatner LA, Johnson RE (2013) Measurement of thermal neutron response in Cherenkov glasses designed for MeV photon detection. IEEE Trans Nucl Sci 60:701–707

    Article  CAS  Google Scholar 

  24. Hayward JP, Hobbs CL, Bell ZW, Boatner LA, Johnson RE, Ramey JO, Jellison GE, Lillard CR (2013) Characterization the radiation response of Cherenkov glass detectors with isotopic sources. J Radioanal Nucl Chem 295:1143–1151

    Article  CAS  Google Scholar 

  25. Hayward JP, Bell ZW, Boatner LA, Hobbs CL, Johnson RE, Ramey JO, Jellison GE (2013) Simulated response of Cherenkov glass detectors to MeV photons. J Radioanal Nucl Chem 295:1321–1329

    Article  CAS  Google Scholar 

  26. Ayaz-Maierhafer B, Zhang X, Hayward JP, Bell ZW, Laubach MA (2014) Investigation of active background from photofission in depleted uranium using Cherenkov detectors and gamma ray time-of-flight analysis. IEEE Trans Nucl Sci 61:2402–2409

    Article  CAS  Google Scholar 

  27. Zhang X, Hayward JP, Laubach MA (2014) New method to remove the electronic noise for absolutely calibrating low gain photomultiplier tubes with a higher precision. Nucl Instrum Methods A 755:32–37

    Article  CAS  Google Scholar 

  28. Fused Silica Standard. https://www.corning.com/worldwide/en/search-results.html?q=+fused+silica+standards&searchCategory=All+Corning. Accessed 9 July 2015

  29. Schott North America, Inc. http://www.us.schott.com/advanced_optics/english/products/optical-materials/optical-glass/optical-glass. Accessed 9 July 2015

  30. Photomultiplier Tubes Assemblies. https://www.hamamatsu.com/resources/pdf/etd/PMT_78-85_e.pdf. Accessed 9 July 2015

  31. Valentine TE (1999) Evaluation of prompt fission gamma rays for use in simulating nuclear safeguards measurement. doi:ORNL/TM-1999/300. http://www.osti.gov/scitech/servlets/purl/753485

  32. Iseg Precision NIM High Voltage supply. http://productspice.iseg-hv.com/media/production/pt_property_2_MAN_NHQ_STD_x3x_EN-20120306.pdf. Accessed 9 July 2015

  33. Agilent U1065A Acqiris High-Speed cPCI Digitizers DC282, DC252 and DC222. http://cp.literature.agilent.com/litweb/pdf/5989-9190EN.pdf. Accessed 9 July 2015

  34. Chen Q, Ferraris M (2012) Effect of ceramic crucibles on Magneto-optical PbO–BiO3–B2O3 glasses properties. New J Glass Ceram 2:41–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Threat Reduction Agency (DTRA) under grant HDTRA 1-09-1-0052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birsen Ayaz-Maierhafer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz-Maierhafer, B., Laubach, M.A. & Hayward, J.P. Sensing of 252Cf fission gamma rays using same-size glass detectors. J Radioanal Nucl Chem 308, 919–926 (2016). https://doi.org/10.1007/s10967-015-4584-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4584-5

Keywords

Navigation