Skip to main content
Log in

The effect of geological structure on radon concentration dissolved in groundwater in nearby Anar fault based on a statistical analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radon concentration in groundwater is due to amount of uranium existing in rocks and geological structures. Radon concentration in 33 groundwater samples from agricultural and drinking wells surrounding Anar fault have measured by RAD7 radon detector. The measured values ranged from 1.33 ± 0.48 to 29.91 ± 3.64 Bq L−1. The results show radon concentration varies by distance from main fault and main stream in which the effect of main fault is more than main stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taber E, Yakut H (2014) Radon measurement in water samples from the thermal springs of Yalova basin, Turkey. J Radioanal Nucl Chem 299:311–319

    Article  Google Scholar 

  2. Al-Attiyah KH, Kadhim IH (2013) Measurement and study of radioactive radon gas concentration in the selected samples of river Hilla/Iraq. J Nat Sci Res 3(14):117–123

    Google Scholar 

  3. Misdaq M, Ghilane M, Ouguidi J, Outeqablit K (2012) Radiation doses to individuals due to 238U, 232Th and 222Rn from the immersion in thermal waters and to radon progeny from the inhalation of air inside thermal stations. Radiat Environ Biophys 51(4):375–389

    Article  CAS  Google Scholar 

  4. Singh P, Singh S, Sahoo BK, Sapra BK, Bajwa BS (2015) A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India. J Radiat Res 8:226–233

    CAS  Google Scholar 

  5. Harris SA, Billmeyer ER, Robinson MA (2006) Evalution of repeated measurements of radon-222 concentration in well water sampled from bedrock aquifers of the Piedmont near Richamond, Virginia, USA: effects of lithology and well characteristics. Environ Res 101(3):323–333

    Article  CAS  Google Scholar 

  6. Askari HR, Rahimi M, Negarestani A (2008) The investigation and measurement of the radon gas working level inside buildings in Rafsanjan. Int J Low Radiat 5(2):98–103

    Article  Google Scholar 

  7. King CY (1986) Gas geochemistry applied to earthquake prediction: an overview. J Geophys Res 91(B12):12269–12281

    Article  Google Scholar 

  8. Chyi LL, Quick TJ, Yang TF, Chen CH (2010) The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast. Geofluids 10(4):556–563

    Article  CAS  Google Scholar 

  9. Khattak N, Khan M, Shah M, Javed M (2011) Radon concentration in drinking water sources of Main Campus of the University of Peshawar and surrounding areas, Khyber Pakhtunkhwa, Pakistan. J Radioanal Nucl Chem 290(2):493–505

    Article  CAS  Google Scholar 

  10. Niasar A, Mohamad Suhaimi J, Mohamad Saad A (2015) Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia. J Radiat Res Appl Sci 8(3):294–299

    Article  Google Scholar 

  11. Prospero JM, Carlson TN (1970) Radon-222 in the North Atlantic trade winds: its relationship to dust transport from Africa. Science 167(3920):974–977 M3

    Article  CAS  Google Scholar 

  12. Choubey VM, Ramola RC (1997) Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environ Geol 32(4):258–262

    Article  CAS  Google Scholar 

  13. Krishan G, Rao MS, Kumar CP, Kumar S, Rao MRA (2015) A study on identification of submarine groundwater discharge in Northern East Coast of India. Aquat Procedia 4:3–10

    Article  Google Scholar 

  14. Burnett WC, Dulaiova H (2006) Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Cont Shelf Res 26(7):862–873

    Article  Google Scholar 

  15. Baykara O, Dogru M (2006) Measurments of radon and uranium concentration in water and soil samples from East Anatolian Active Fault Systems(Turkey) J. Radiat Meas 41:362–367

    Article  CAS  Google Scholar 

  16. Kuo T, Fan K, Kuochen H, Han Y, Chu H, Lee Y (2006) Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake. J Environ Radioact 88:101–106

    Article  CAS  Google Scholar 

  17. Asikainen M, Kahlos H (1979) Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region. Geochim Cosmochim Acta 43(10):1681–1686

    Article  CAS  Google Scholar 

  18. Malakootian M, Khashi Z, Iranmanesh F, Rahimi M (2014) Radon concentration in drinking water in villages nearby Rafsanjan fault and evaluation the annual effective dose. J Radioanal Nucl Chem 302(3):1167–1176

    Article  CAS  Google Scholar 

  19. Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys 69(2):67–81

    Article  Google Scholar 

  20. Lawrence E, Poeter E, Wanty R (1991) Geohydrologic, geochemical and geologic controls on the occurrence of radon in groundwater near Conifer, Colorado USA. J Hydrol 127(1):367–386

    Article  CAS  Google Scholar 

  21. Malakootian M, Fard ZD, Rahimi M (2015) Determination of radon concentration in drinking water resources of villages nearby Lalehzar fault and evaluation the annual effective dose. J Radioanal Nucl Chem 304(2):805–815

    Article  CAS  Google Scholar 

  22. Moldovan M, Nita DC, Cucos-Dinu A, Dicu T, Bican-Brisan N, Cosma C (2014) Radon concentration in drinking water and supplementary exposure in Baita-stei mining area, Bihor county (Romania). Radiat Prot Dosimetry 158(4):447–452

    Article  CAS  Google Scholar 

  23. Erees FS, Aytas S, Sac MM, Yener G, Salk M (2007) Radon concentration in thermal waters related to seismic events along faults in the Denizli Basin Western Turkey. Radiat Meas 42(1):80–86

    Article  CAS  Google Scholar 

  24. Abdallah SM, Habib RR, Nuwayhid RY, Chatila M, Katul G (2007) Radon measurements in well and spring water in Lebanon. Radiat Meas 42(2):298–303

    Article  CAS  Google Scholar 

  25. Somashekar R, Ravikumar P (2010) Radon concentration in groundwater of Varahi and Markandeya river basins, Karnataka State India. J Radioanal Nucl Chem 285(2):343–351

    Article  CAS  Google Scholar 

  26. Duggal V, Asha R, Rohit M (2012) In situ measurements of radon level in groundwater in Northern rajasthan, India. Adv Appl Sci Res 3(6):3825–3830

    Google Scholar 

  27. Choubey VM, Arora BR, Barbosa SM, Kumar N, Kamra L (2011) Seasonal and daily variation of radon at 10 m depth in borehole, Garhwal Lesser Himalaya, India. Appl Radiat Isot 69(7):1070–1078

    Article  CAS  Google Scholar 

  28. Krishan G, Rao MS, Kumar CP (2014) Estimation of Radon concentration in groundwater of coastal area in Baleshwar district of Odisha, India. Indoor Built Environ 0(0):1–6

    Google Scholar 

  29. Wu YY, Ma YZ, Cui HX, Liu JX, Sun YR, Shang B, Su X (2014) Radon concentrations in drinking water in Beijing City, China and contribution to radiation dose. Int J Environ Res Public Health 11(11):11121–11131

    Article  Google Scholar 

  30. Binesh A, Mowlavi AA, Mohammadi S (2012) Estimation of the effective dose from radon ingestion and inhalation in drinking water sources of Mashhad, Iran. Iran J Radiat Res 10(1):37–41

    Article  Google Scholar 

  31. Shahabpour J (2005) Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J Asian Earth Sci 24(4):405–417

    Article  Google Scholar 

  32. Durridge Company Inc. (2011) RAD7 Radon Detector.User Manual

  33. Durridge Company Inc. (2011) RAD7 RADH2O Radon in water Accessory. Owner’s Manual

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Asadi Mohammad Abadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi Mohammad Abadi, A., Rahimi, M. & Jabbari Koopaei, L. The effect of geological structure on radon concentration dissolved in groundwater in nearby Anar fault based on a statistical analysis. J Radioanal Nucl Chem 308, 801–807 (2016). https://doi.org/10.1007/s10967-015-4581-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4581-8

Keywords

Navigation