Skip to main content
Log in

Understanding and modeling of the vertical downward migration of 238U within the soil profile of south-western (SW) Punjab, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The vertical downward migration of 238U in soils collected from south-western Punjab was studied from the depth distributions using the diffusion–convection model. The time-dependent convective rates (ν) of 238U were found to be in the order of 10−7–10−4 cm year−1, whereas under the assumption of steady state (time-independent), values were in the order of 10−5–10−4 cm year−1. However, the diffusion rates (D) were in the order of 10−6–10−3 cm2 year−1 and under the steady state, values obtained to be relatively higher as 0.002–0.70 cm2 year−1. These values were within the range of reported literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frissel MJ, Pennders R (1983) Models for the accumulation and migration of Sr-90, Cs-137, Pu-239, 240 and Am-241 in the upper layer of soils. In: Coughtrey PJ (ed) Ecological aspects of radionuclide release, vol 3. Special Publication Series of the British Ecological Society, Blackwell, Oxford, pp 63–73

    Google Scholar 

  2. Schuller P, Bunzl K, Voigt G, Ellies A, Castillo A (2004) Global fallout 137Cs accumulation and vertical migration in selected soils from South Patagonia. J Environ Radioact 71:43–60

    Article  CAS  Google Scholar 

  3. Bossew P, Kirchner G (2004) Modelling the vertical distribution of radionuclides in soil. Part 1: the convection–dispersion equation revisited. J Environ Radioact 73:127–150

    Article  CAS  Google Scholar 

  4. Butkus D, Konstantinova M (2008) Modelling vertical migration of 137Cs in Lithuanian soils. J Environ Eng Landsc Manag 16(1):23–29

    Article  Google Scholar 

  5. Kumar A, Rout S, Singhal RK, Ravi PM (2013) Thermodynamic parameters of U(VI) sorption onto soils in aquatic systems. Spring Plus 2:530

    Article  Google Scholar 

  6. Bibler JP, Marson DB (1999) Behaviour of mercury, lead, ceasium and uranyl ions on four SRS soils (U). In: Keith S, Spoo W, Corcoran J (eds) Toxicological profile for Uranium. Agency for Toxic Substances and Disease Registry, Atlanta, p 462

    Google Scholar 

  7. Abdelouas A, Lutze W, Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34(4):343–361

    Article  CAS  Google Scholar 

  8. Bunzl K (2001) Migration of fallout-radionuclides in the soil: effects of non-uniformity of the sorption properties on the activity-depth profiles. Radiat Environ Biophys 40:237–241

    Article  CAS  Google Scholar 

  9. Szerbin P, Koblinger BE, Koblinger L, Vegvari I, Ugron A (1999) Ceasium-137 migration in Hungarian soils. Sci Total Environ 227:215–227

    Article  CAS  Google Scholar 

  10. Likar A, Omahem G, Lipoglavsek M, Vidmar T (2001) A theoretical description of diffusion and migration of Cs in soil. J Environ Radioact 57:191–201

    Article  CAS  Google Scholar 

  11. Luigi M, John EB, Lars H, Rudie H, Jim TS, Mark Z (2003) Review and assessment of models used to predict the fate of radionuclides in lakes. J Environ Radioact 69(3):177–205

    Article  Google Scholar 

  12. Victoria P (2007) Modeling Cs-137 migration processes in lake sediments. J Environ Radioact 96(1–3):54–62

    Google Scholar 

  13. Hrabovskyy V, Dzendzelyuk O, Katerynchuk I, Furgala Y (2004) Monitoring of radionuclides contamination of soils in Shatsk National Natural Park (Volyn Region, Ukraine) during 1994–2001. J Environ Radioact 72:25–33

    Article  CAS  Google Scholar 

  14. Schuller P, Voigt G, Handl J, Ellies A, Oliva L (2002) Global weapon’s fallout 137Cs in soil and transfer to vegetation in south-central Chile. J Environ Radioact 62:181–193

    Article  CAS  Google Scholar 

  15. Isaksson M, Erlandsson B (1998) Models for the vertical migration of 137Cs in the ground- a field study. J Environ Radioact 41:163–182

    Article  CAS  Google Scholar 

  16. Barišic D, Vertačnik A, Lulic S (1999) Caesium contamination and vertical distribution in undisturbed soils in Croatia. J Environ Radioact 46:361–374

    Article  Google Scholar 

  17. Ivanov YA, Lewyckyj N, Levchuk SE (1997) Migration of 137Cs and 90Sr from the Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J Environ Radioact 35:1–21

    Article  CAS  Google Scholar 

  18. Kirchner G (1998) Applicability of compartmental models for simulating the transport of radionuclides in soil. J Environ Radioact 38(3):339–352

    Article  CAS  Google Scholar 

  19. Kristic D, Nikezic D, Stevanovic N, Jelic M (2004) Vertical profile of 137Cs in soil. Appl Radiat Isot 61:1487–1492

    Article  Google Scholar 

  20. Kumar A, Joshi VM, Mishra MK, Karpe R, Rout S, Narayanan U, Tripathi RM et al (2012) Distribution, enrichment and principal component analysis for possible sources of naturally occurring and anthropogenic radionuclides in the agricultural soil of Punjab state, India. Radiat Prot Dosim 150(1):71–81

    Article  CAS  Google Scholar 

  21. Kumar A, Karpe R, Rout S, Joshi VM, Singhal RK, Ravi RM (2013) Spatial distribution an accumulation of 226Ra, 228Ra, 40K and 137Cs in bottom sediments of Mumbai Harbour Bay. J Radioanal Nucl Chem 293(1):83–839

    Google Scholar 

  22. Bhade PDS, Kumar A, Reddy PJ, Karpe R, Kolekar RV, Singh R, Pradeepkumar KS (2015) Comparison of radiometric and non-radiometric methods for uranium determination in groundwater of Punjab. J Radioanal Nucl Chem, India. doi:10.1007/s10967-015-4132-3

    Google Scholar 

  23. Singhal RK, Joshi VM, Preetha J, Karpe R, Kumar A, Hegde AG (2007) Determination of ultra trace level of uranium in ground water of different geochemical environment by adsorptive stripping voltammeter. Water Air Soil Pollut 184:17–27

    Article  CAS  Google Scholar 

  24. Kumar A, Singhal RK, Rout S, Narayanan U, Karpe R, Ravi PM (2013) Adsorption and kinetic behavior of uranium and thorium in seawater-sediment system. J Radioanal Nucl Chem 295:649–656

    Article  CAS  Google Scholar 

  25. Kumar A, Rout S, Mishra MK, Karpe R, Ravi PM, Tripathi RM (2015) Impact of particle size, temperature and humic acid on sorption of uranium in agricultural soils of Punjab. Spring Plus, India. doi:10.1186/s40064-015-1051-2

    Google Scholar 

  26. Oughton DH, Bmretzen P, Salbu B, Tronstad E (1997) Mobilisation of 137Cs and 90Sr from sediments: potential sources to arctic waters. Sci Total Environ 202:155–165

    Article  CAS  Google Scholar 

  27. Huo L, Qian T, Hao J, Zhao D (2013) Sorption and retardation of strontium in saturated Chinese loess: experimental results and model analysis. J Environ Radioact 116:19–27

    Article  CAS  Google Scholar 

  28. Mollah AS, Ullah SM (1998) Determination of distribution coefficient of 137Cs and 90Sr in soil from AERE, Savar. Waste Manag 18:287–291

    Article  CAS  Google Scholar 

  29. Kumar A, Rout S, Chopra M, Mishra DG, Singhal RK, Ravi PM, Tripathi RM (2014) Modeling of 137Cs migration in cores of marine sediments of Mumbai Harbor Bay. J Radioanal Nucl Chem 301:615–626

    Article  CAS  Google Scholar 

  30. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  31. Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice-Hall Inc., New Jersey

    Google Scholar 

  32. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  33. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Geoscience texts

    Google Scholar 

  34. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000). Sources, effects, and risks of ionizing radiation. United Nations, New York

  35. Sims DJ, Andrews WS, Creber KAM (2008) Diffusion coefficients for uranium, cesium and strontium in unsaturated prairie soil. J Radioanal Nucl Chem 277(1):143–147

    Article  CAS  Google Scholar 

  36. Rameback H, Skalberg M, Eklund UB, Kjellberg L, Werme L (1998) Mobility of U, Np, Pu, Am and Cm from spent nuclear fuel into bentonite clay. Radiochim Acta 82(1):167–171

    Google Scholar 

  37. Muurinen A (1990) Diffusion of uranium in compacted sodium bentonite. Eng Geol 28(3–4):359–367

    Article  Google Scholar 

  38. Wang XK, Chen CL, Zhou X, Tan XL, Hu WP (2005) Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim Acta 93(5):273–278

    CAS  Google Scholar 

  39. Alonso U, Missana T, Patelli A, Ravagnan J, Rigato V (2003) RBS and μPIXE analysis of uranium diffusion from bentonite to the rock matrix in a deep geological waste repository. Nucl Instrum Methods Phys Res B 207(2):195–204

    Article  CAS  Google Scholar 

  40. Bai J, Chongxuan L, Ball WP (2009) Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material. Environ Sci Technol 43(20):7706–7711

    Article  CAS  Google Scholar 

  41. Patra AC, Sumes CG, Mohapatra S, Sahoo SK, Tripathi RM, Puranik VD (2011) Long-term leaching of uranium from different waste matrices. J Environ Manag 92(3):919–925

    Article  CAS  Google Scholar 

  42. Yamaguchi T, Nakayama S (1998) Diffusivity of U, Pu, and Am carbonate complexes in granite from Inada, Ibaraki, Japan studied by through diffusion. J Contam Hydrol 35(1–3):55–65

    Article  CAS  Google Scholar 

  43. Albinsson Y, Christiansen-Satmark B, Engkvist I, Johansson W (1991) Transport of actinides and Tc through a bentonite backfill containing small quantities of iron or copper. Radiochim Acta 52(1):283–286

    Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the guidance, help and constant encouragement provided by Dr. K. S. Pradeepkumar, Associate Director, H, S & E Group, BARC, Mumbai. The authors are also grateful for the financial support given by Bhabha Atomic Research Centre, Mumbai, under the special project for noticeable anomalies of uranium in brackish groundwater of SW Punjab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rout, S., Pandey, M. et al. Understanding and modeling of the vertical downward migration of 238U within the soil profile of south-western (SW) Punjab, India. J Radioanal Nucl Chem 308, 1043–1053 (2016). https://doi.org/10.1007/s10967-015-4549-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4549-8

Keywords

Navigation