Skip to main content
Log in

Modeling of 137Cs migration in cores of marine sediments of Mumbai Harbor Bay

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The vertical concentration profile of 137Cs in cores of marine sediment of Mumbai Harbor Bay has been studied by the compartment and the diffusion-convection models. Based on the measured concentrations of 137Cs in the sediment layers, the various transport parameters such as sedimentation rate, residence half- time, effective migration velocity, diffusion coefficient and the convective velocities were determined. The sedimentation rate was determined to be 1.61, 1.03 0.69 and 1.25 cm year−1 from the slope of lines obtained from the depth profile of 137Cs in cores using a least-square fitting method at site 1, 2, 3 and 4 respectively. The mean residence half-times, ranging from 11 to 35 years were observed to be the highest at the upper layers (up to 8 cm) of all sites and decreased with sediment depth. Subsequently, the ranges of mean value of effective vertical migration velocity in the same layers were between 0.15 and 0.46 cm year−1. As expected, the vertical migration in the upper sediment layers was very slow and thereafter increased slowly in the succeeding layers (12 cm onwards) of all sites with a mean ranging from 1.11 to 4.13 cm year−1. The obtained migration velocities were quite higher than those reported in literatures for global fallout. The convective velocity and diffusion coefficient at each site were assumed to be constant in the whole depth and calculated under the assumption of steady state. Using a depth-zoned bioturbational mixing model, the estimated biological diffusion coefficients ranged from 7 × 10−7 to 3.8 × 10−6 cms−1 which were within the literature values reported for shallow coastal environments and deep sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krishnaswami S, La1 D (1978) Radionuclide limnochronology. In: Lerman A (ed), Lakes-chemistry, geology, physics. Springer, New York, pp 153–177

  2. Durham RW, Joshi SR (1980) The 210Pb and 137Cs profiles in sediment cores from Lakes Matagami and Quevillon, Northwest Quebec, Canada. Can J Earth Sci 147:1746–1750

    Article  Google Scholar 

  3. Prokhorov VM (1975) Forecasting 137Cs migration in soils. Soviet Soil Sci (Engl. Translation) 7:724–730

    Google Scholar 

  4. Jakubick AT (1979) Geochemistry and physics of plutonium migration. In: Ahrens LH (ed) Origin and distribution of the elements. Pergamon, Oxford, pp 775–790

    Google Scholar 

  5. Coughtrey PJ, Thome MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems-A critical review of data, vol. 1, A.A. Balkema, Rotterdam

  6. Frissel MJ, Pennders R (1983) Models for the accumulation and migration of 90Sr, 137Cs, 239 + 240Pu and 241Am in the upper layer of soils. In: Coughtrey PJ, Bell JNB, Roberts TM (eds) Ecological aspects of radionuclide release. Blackwell Scientific, Oxford, pp 63–72

    Google Scholar 

  7. Kirchner G, Baumgartner D (1992) Migration rates of radionuclides deposited after the Chernobyl accident in various North German soils. Analyst 117:475–479

    Article  CAS  Google Scholar 

  8. Bunzl K, Kofuji H, Schimmack W, Tsumura A, Ueno K, Yamamoto M (1995) Residence times of global weapons testing fallout 237Np in a grassland soil compared to 239+240Pu, 241Am and 137Cs. Health Phys 68:89–93

    Article  CAS  Google Scholar 

  9. Bonazzola GC, Ropolo R, Facchinelli A (1993) Profiles and downward migration of 137Cs and 106Ru deposited on Italian soils after the Chernobyl accident. Health Phys 64:479–484

    Article  CAS  Google Scholar 

  10. Chibowski S, Mitura A (1995) Studies of the rate of migration of radiocesium in some types of soils in Eastern Poland. Sci Total Environ 170:193–198

    Article  CAS  Google Scholar 

  11. Hiroaki K., Yuichi O, Mengistu T (2011) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident, J Environ Radioactiv 1–6

  12. Boone FW, Kantelo MV, Mayer PG, Palms JM (1985) Residence half-times of 1291 in undisturbed surface soils based on measured soil concentration profiles. Health Phys 48:401–413

    Article  CAS  Google Scholar 

  13. Bunzl K, Forster H, Kracke W, Schimmack W (1994) Residence times of 239+240Pu, 238Pu, 241Am and 137Cs in the upper horizons of an undisturbed grassland soil. J Environ Radioactiv 22:1l–27

    Article  Google Scholar 

  14. Strebl F, Gerzabek MH, Karg V, Tataruch F (1996) 137Cs-migration in soils and its transfer to roe deer in an Austrian forest stand. Sci Total Environ 181:237–247

    Article  CAS  Google Scholar 

  15. Schuller P, Ellies E, Kirchner G (1997) Vertical migration of fallout 137Cs in agricultural soils from Southern Chile. Sci Total Environ 193:197–205

    Article  CAS  Google Scholar 

  16. Szerbin P, Koblinger-Bokori E, Koblinger L, Vegvari I, Ugron A (1999) Ceasium-137 migration in Hungarian soils. Sci Total Environ 227:215–227

    Article  CAS  Google Scholar 

  17. Likar A, Omahem G, Lipoglavsek M, Vidmar T (2001) A theoretical description of diffusion and migration of Cs in soil. J Environ Radioact 57:191–201

    Article  CAS  Google Scholar 

  18. Kristic D, Nikezic D, Stevanovic N, Jelic M (2004) Vertical profile of 137Cs in soil. Appl Radiat Isotopes 61:1487–1492

    Article  Google Scholar 

  19. Kumar A, Singhal RK, Preetha J, Rupali K, Narayanan U, Sughandhi S, Manish KM, Ranade AK (2008) Impact of Tropical ecosystem on the migrational behavior of 40K, 137Cs, 232Th, 238U in perennial plants. Water Air Soil Pollution 192:293–302

    Article  CAS  Google Scholar 

  20. Kumar A, Rupali K, Rout S, Joshi VM, Singhal RK, Ravi PM (2013) Spatial distribution and accumulation of 226Ra, 228Ra, 40K and 137Cs in bottom sediments of Mumbai Harbour Bay. Journal of Radioanalytical Nuclear Chemistry 295(2):835–839

    Article  CAS  Google Scholar 

  21. Kumar A, Joshi VM, Manish KM, Rupali K, Rout S, Narayanan U, Tripathi RM, Jaspal S, Kumar S, Hegde AG, Kushwaha HS (2011) Distribution, enrichment and principal component analysis for possible sources of naturally occurring and anthropogenic radionuclides in the agricultural soil of Punjab State, India. Radiat Prot Dosim. doi:10.1093/rpd/ncr366

    Google Scholar 

  22. Walling DE, He Q (1999) Improved models for estimating soil erosion rates from Caesium-137 measurements. J Environ Qual 28:611–622

    Article  CAS  Google Scholar 

  23. Walling DE, Quine TA (1990) Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degrad Rehabil 2:161–175

    Article  Google Scholar 

  24. Walling DE, He Q, Appleby PG (2002) Conversion models for use in soil-erosion. Soil-redistribution and sedimentation investigations. In: Zapata F (ed) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer Academic, Dordrecht, pp 111–164

    Google Scholar 

  25. Zhang XB, Higgitt DL, Walling DE (1990) A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. J Hydrological Sci 35:26–276

    Google Scholar 

  26. Sutherland RA (1992) Caesium-137 estimates of erosion in agricultural areas. Hydrol Proc 6:215–225

    Article  Google Scholar 

  27. Poręba G, Bluszcz A, Śnieszko Z (2003) Concentration and vertical distribution of 137Cs in agricultural and undisturbed soils from Chechło and Czarnocin areas. Geochronometria 22:67–72

    Google Scholar 

  28. Oldfield F, Appleby PG (1984) Empirical testing of 210Pb dating models for lake sediments. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 93–124

  29. Coughtrey PJ (1988) Models for radionuclide transport in soils. Soil Use Manage 4:84–90

    Article  CAS  Google Scholar 

  30. Kirchner G (1998) Applicability of compartmental models for simulating the transport of radionuclides in soil. J Environ Radioact 38(3):339–352

    Article  CAS  Google Scholar 

  31. Brown RF (1985) Biomedical systems analysis via compartmental concept. Abacus Press, Cambridge

    Google Scholar 

  32. Jacquez JA (1985) Compartmental Analysis in Biology and Medicine, 2nd edn. The University of Michigan Press, Ann Arbor

    Google Scholar 

  33. Kryshev II, Sazykina TG (1995) Radiological consequences of radioactive contamination of the Kara and Barents seas. J Environ Radioact 29:213–223

    Article  CAS  Google Scholar 

  34. Noureddine A, Baggoura B (1997) Plutonium Isotopes, 137Cs, 90Sr and natural radioactivity in marine sediments from Ghazaouet (Algeria). J Environ Radioact 34:127–138

    Article  CAS  Google Scholar 

  35. Strand P, Trand A, Nikitin A, Rudjord AL, Salbu B, Christensen G, Foyn L, Kry dhev II, Chumichev VB, Dahlgaard H, Holm E (1994) Survey of artificial radionuclides in the Barents Sea and the Kara Sea. J Environ Radioact 25:99–112

    Article  CAS  Google Scholar 

  36. Cundy AB, Croudace IW (1995) Sedimentary and geochemical variations in a saltmarsh/mudflat environment from the mesotidal Hamble Estuary, southern England. Mar Chem 51:115–132

    Article  CAS  Google Scholar 

  37. He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30(2):117–137

    Article  CAS  Google Scholar 

  38. Rosén K, Öborn I, Lönsjö H (1999) Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident, 1987-1995. J Environ Radioact 46:45–66

    Article  Google Scholar 

  39. Schimmack W, Schultz W (2006) Migration of fallout radiocaesium in a grassland soil from 1986 to 2001, Part I: activity-depth profiles of 134Cs and 137Cs. Sci Total Environ 368:853–862

    Article  CAS  Google Scholar 

  40. Ivanov YA, Lewyckyj N, Levchuk SE, Prister BS, Firsakova SK, Arkhipov NP, Arkhipov AN, Kruglov SV, Alexakhin RM, Sandalls J, Askbrant S (1997) Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J Environ Radioact 35(1):1–21

    Article  CAS  Google Scholar 

  41. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geo Sci 4:535–539

    Article  CAS  Google Scholar 

  42. Coleman NT, Craig D, Lewis RJ (1963) Ion exchange reactions of caesium. Soil Sci Soc Am Proc 27:287–289

    Article  CAS  Google Scholar 

  43. Davis JJ (1963) Caesium and its relationship to potassium in ecology. In: Shultz V, Klement Jr. AW (eds) Radioecology. Reinhold, New York, pp 539–556

  44. Kumar A, Singhal RK, Rout S, Narayanan U, Karpe R, Ravi PM (2013) Adsorption and kinetic behavior of uranium and thorium in seawater-sediment system. J Radioanal Nucl Chem 295:649–656

    Article  CAS  Google Scholar 

  45. Grzegorz P, Andrzej B, Zbigniew S (2003) Concentration and vertical distribution of 137Cs in Agricultural and undisturbed soils from Chechlo andCzarnocin areas. J Method Appl Absol Chronol Geochronometria 22:67–72

    Google Scholar 

  46. Benninger LK, Aller RC, Cochran JK, Turekian KK (1979) Effects of biological sediment mixing on the 210Pb chronology and trace metal distribution in a Long Island Sound sediment core, Earth Planet. Sei Lett 43:241–259

    CAS  Google Scholar 

  47. Ouellet G (1982) Étude de l’interaction des animaux benthiques avec les sédiments du chenal laurentien. M. Sei. thesis, Univ. Québec, Rimouski, 188

  48. Robbins JA, McCall PL, Fisher JB, Krezoski JR (1979) Effect of deposit feeders on migration of 137Cs in lake sediments. Earth Planet Sei Lett 42:277–287

    Article  CAS  Google Scholar 

  49. Aller RC, Benninger LK, Cochran JK (1980) Trackin ~ particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sei Lett 47:161–175

    CAS  Google Scholar 

  50. Duursma EK, Gross MG (1971) Marine sediments and radioactivity. In: Radioactivity in the marine environment. National Academy of Sciences 6, pp 147–160

  51. Guinnasso NL Jr, Schink DR (1975) Quantitative estimates of biological mixing rates in abyssal sediments. J Geophys Res 80:3032–3043

    Article  Google Scholar 

  52. Demaster DJ, Cochran JK (1982) Particle mixing rates in deep-sea sediments determined from excess 210Pb and 32Si profiles. Earth Planet Sei Lett 61:257–271

    Article  CAS  Google Scholar 

  53. Hillmann U, Schimmack W, Jacob P, Bunzl K (1996) In situ γ-spectometry several years after deposition of radiocasium part I. Approximation of depth distributions by the Lorentz function. Radiat Environ Biophys 35:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the guidance and constant encouragement provided Dr. D.N. Sharma, Director, Health, Safety & Environment Group, BARC, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rout, S., Chopra, M.K. et al. Modeling of 137Cs migration in cores of marine sediments of Mumbai Harbor Bay. J Radioanal Nucl Chem 301, 615–626 (2014). https://doi.org/10.1007/s10967-014-3116-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3116-z

Keywords

Navigation