Skip to main content
Log in

Ion exchange isotherms in solid: electrolyte solution systems

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

It is shown show that the ion exchange isotherms and the law of mass action are equivalent, the c/a versus c functions can be derived from the law of mass action (c and a: the concentration of ions in ion exchanger and solution, respectively). The equations are applied for cation exchange processes of bentonite clay (cobalt, manganese, mercury ions with calcium-bentonite; strontium ions with sodium-bentonite; cesium ions with lanthanide bentonite; lutetium ion with calcium-bentonite). The linear or non-linear shape of the isotherms does not prove the heterogeneity of the ion exchanger or the interaction among the sorbed cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerr H (1928) The nature base exchange on soil acidity. J Am Soc Agron 20:309–355

    Article  CAS  Google Scholar 

  2. Nagy N, Kónya J (2009) Interfacial chemistry of rocks and soils. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  3. Gaines G, Thomas HC (1953) Adsorption studies on clay minerals II. A formation of the thermodynamics of exchange adsorption. J Phys Chem 21:714–718

    Article  CAS  Google Scholar 

  4. Howery D, Thomas H (1965) Ion exchange on mineral clinoptilolite. J Phys Chem 69:531–537

    Article  CAS  Google Scholar 

  5. Argersinger WJ, Davidson AW, Bonner OD (1950) Thermodynamics and ion exchange phenomena. Trans Kansas Acad Sci 53:404–410

    Article  CAS  Google Scholar 

  6. Ekedahl E, Högfeldt E, Sillén L (1950) Activities of components in ion exchangers. Acta Chim Scand 4:556–558

    Article  CAS  Google Scholar 

  7. Högfeldt E, Ekedahl E, Sillén L (1950) Activities of the components in ion exchangers with multivalent ions. Acta Chim Scand 4:828–829

    Article  Google Scholar 

  8. Fletcher P, Sposito G (1989) The chemical modeling of clay electrolyte interactions for montmorillonite. Clay Miner 24:375–391

    Article  CAS  Google Scholar 

  9. Tournassat C, Gailhanou H, Crouzet C, Braibant G, Gautier A, Lassin A, Blanc P, Gaucher EC (2007) Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces. Geochim Cosmochim Acta 71:1098–1114

    Article  CAS  Google Scholar 

  10. Tertre E, Pret D, Ferrage E (2011) Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 1: chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry. J Colloid Interface Sci 353:248–256

    Article  CAS  Google Scholar 

  11. Tertre E, Ferrage E, Bihannic I, Michot LJ, Pret D (2011) Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 2: understanding the effect of the m/V ratio. Implications for pore water composition and element transport in natural media. J Colloid Interface Sci 363:334–347

    Article  CAS  Google Scholar 

  12. Bradbury MH, Baeyens B (2005) Experimental measurements and modeling of sorption competition on montmorillonite. Geochim Cosmochim Acta 69:4187–4197

    Article  CAS  Google Scholar 

  13. Baeyens B, Bradbury MH (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 1. Titration and sorption measurements. J Contam Hydrol 27:199–222

    Article  CAS  Google Scholar 

  14. Bradbury MH, Baeyens B (2009) Sorption modelling on illite Part I: titration measurements and the sorption of Ni Co, Eu and Sn. Geochim Cosmochim Acta 73:990–1003

    Article  CAS  Google Scholar 

  15. Goldberg S (1992) Use of surface complexation models in soil chemical-systems. Adv Agron 47:233–329

    Article  CAS  Google Scholar 

  16. Sparks DL (2003) Environmental soil chemistry. Academic Press, Amsterdam

    Google Scholar 

  17. Sposito G (1981) Thermodynamics of soil solutions. Oxford Clarendon Press, London

    Google Scholar 

  18. Kinniburgh DG, Barker JA, Whitfield M (1983) A comparison of some simple adsorption-isotherms for describing divalent-cation adsorption by ferrihydrite. J Colloid Interface Sci 95:370–384

    Article  CAS  Google Scholar 

  19. Dewit JCM, Vanriemsdijk WH, Nederlof MM, Kinniburgh DG, Koopal LK (1990) Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Anal Chim Acta 232:189–207

    Article  CAS  Google Scholar 

  20. Borkovec M, Koper GJM (1994) Affinity distributions of polyampholytes with interacting acid-base groups. Langmuir 10:2863–2865

    Article  CAS  Google Scholar 

  21. Cernik M, Borkovec M, Westall JC (1995) Regularized least-squares methods for the calculation of discrete and continuous affinity distributions for heterogeneous sorbents. Environ Sci Technol 29:413–425

    Article  CAS  Google Scholar 

  22. Altin O, Ozbelge HO, Dogu T (1998) Use of general purpose adsorption isotherms for heavy metal clay mineral interactions. J Colloid Interface Sci 198:130–140

    Article  Google Scholar 

  23. Y-g Chen, He Y, W-m Ye, W-h Sui, M-m Xiao (2013) Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite. Trans Nonferr Metals Soc China 23:3482–3489

    Article  Google Scholar 

  24. Galambos M, Kufcakova J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281:485–492

    Article  CAS  Google Scholar 

  25. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  26. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater 252:428–461

    Article  Google Scholar 

  27. Sadeghalvad B, Armaghan M, Azadmehr A (2014) Using Iranian bentonite (Birjand area) to remove cadmium from aqueous solutions. Mine Water Environ 33:79–88

    Article  CAS  Google Scholar 

  28. Konya J, Nagy NM (2009) Isotherm equation of sorption of electrolyte solutions on solids: how to do heterogeneous surface from homogeneous one? Period Polytech Chem Eng 53:55–60

    Article  CAS  Google Scholar 

  29. Konya J, Nagy NM (2013) Misleading information on homogeneity and heterogeneity obtained from sorption isotherms. Adsorption 19:701–707

    Article  CAS  Google Scholar 

  30. Bergaya F, Theng B, Lagaly G (2008) Handbook of clay science, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  31. Lavastre W, Jendrzejewski N, Agrinier P, Javoy M, Evrard M (2005) Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France): Cl-35 and C-37 evidence. Geochim Cosmochim Acta 69:4949–4961

    Article  CAS  Google Scholar 

  32. El-Sayed M, Burau R, Babcock K (1970) Thermodynamics of copper(ii)-calcium exchange on bentonite clay. Soil Sci Soc Am Proc 34:397–400

    Article  CAS  Google Scholar 

  33. Gilbert M (1970) Thermodynamic study of calcium-manganese exchange on Camp-Berteau montmorillonite. Soil Sci 109:19–21

    Article  CAS  Google Scholar 

  34. Gilbert M, van Bladel R (1970) Thermodynamics and thermochemistry of the exchange reaction between NH4 and Mn in a montmorillonite clay. J Soil Sci 21:38–49

    Article  CAS  Google Scholar 

  35. Pal D, Sastry T (1983) Thermodynamics of zinc sorption on bentonite and soil clays derived from vertisols. Clay Res 2:33–38

    CAS  Google Scholar 

  36. Singhal J, Singh R (1973) Thermodynamics of cobalt(II)-sodium exchange on montmorillonite clay. J Soil Sci 24:271–275

    Article  CAS  Google Scholar 

  37. Konya J, Nagy NM (1998) The effect of complex-forming agent (EDTA) on the exchange of manganese ions on calcium-montmorillonite—I. Reaction scheme and calcium-montmorillonite Na(2)EDTA system. Colloids Surf A 136:299–310

    Article  CAS  Google Scholar 

  38. Konya J, Nagy NM (2011) Sorption of dissolved mercury (II) species on calcium-montmorillonite: an unusual pH dependence of sorption process. J Radioanal Nucl Chem 288:447–454

    Article  CAS  Google Scholar 

  39. Nagy NM, Konya J (1988) The interfacial processes between calcium-bentonite and zinc ion. Colloids Surf 32:223–235

    Article  CAS  Google Scholar 

  40. Nagy NM, Konya J, Urbin Z (1997) The competitive exchange of hydrogen and cobalt ions on calcium-montmorillonite. Colloids Surf A 121:117–124

    Article  CAS  Google Scholar 

  41. Richards L (1957) Diagnosis and improvement of saline and alkaline soils, U.S. Department of Agriculture Handbook

Download references

Acknowledgments

We thank our students for their cooperation in the experimental work: Bence Kisgergely (Sr–Na exchange) and Tamás Kónya (Lu–Ca exchange).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémi M. Nagy.

Appendix

Appendix

Homovalent exchange

In case of homovalent exchange, all exponents in Eq. 2 are equal to 1. Thus,

$$K_{\text{B,A}} = \frac{{a_{\text{A}} c_{\text{B}} }}{{a_{\text{B}} c_{\text{A}} }}$$
(3)

In the ion exchange processes, all exchange sites are always occupied by the ions, that is, the cation exchange capacity, or by the term used in the sorption isotherm, the number of exchange sites (ζ) is the sum of the concentration of the ions on the solid (a A and a B):

$$\zeta = a_{\text{A}} + a_{\text{B}}$$
(4)

From here,

$$a_{\text{B}} = \zeta - a_{\text{A}}$$
(5)

By substituting Eq. 5 into Eq. 3:

$$K_{\text{B,A}} = \frac{{a_{\text{A}} c_{\text{B}} }}{{\left( {\zeta - a_{\text{A}} } \right)c_{\text{A}} }}$$
(6)
$$\frac{{\left( {\zeta - a_{\text{A}} } \right)}}{{a_{\text{A}} }} = \frac{{c_{\text{B}} }}{{K_{\text{B,A}} c_{\text{A}} }} = \frac{\zeta }{{a_{\text{A}} }} - 1$$
(7)
$$\frac{\zeta }{{a_{\text{A}} }} = 1 + \frac{{c_{\text{B}} }}{{K_{\text{B,A}} c_{\text{A}} }}$$
(8)
$$\frac{{c_{\text{A}} \zeta }}{{a_{\text{A}} }} = c_{\text{A}} + \frac{{c_{\text{B}} }}{{K_{\text{B,A}} }}$$
(9)
$$\frac{{c_{\text{A}} }}{{a_{\text{A}} }} = \frac{1}{\zeta }\left( {c_{\text{A}} + \frac{{c_{\text{B}} }}{{K_{\text{B,A}} }}} \right)$$
(10)

Equation 10 is equal to the homovalent ion exchange isotherm derived [29] where

$$K_{\text{B,A}} = \frac{{K_{\text{B}} }}{{K_{\text{A}} }}$$
(11)

where K A and K B are the parameter characterizing the Gibbs energy of the ions.

The differences between the homovalent ion exchange isotherm equation (Eq. 10), the simple and competitive Langmuir adsorption isotherms were discussed in detail in [29].

Similar equation can be described for the B ion:

$$\frac{{c_{\text{B}} }}{{a_{\text{B}} }} = \frac{1}{\zeta }\left( {c_{\text{B}} + K_{\text{B,A}} c_{\text{A}} } \right) = \frac{1}{\zeta }\left( {c_{\text{B}} + \frac{{c_{\text{A}} }}{{K_{\text{A,B}} }}} \right)$$
(12)

Heterovalent exchange: the exchange of monovalent and bivalent ions

Firstly, let’s assume a monovalent ion exchanger and exchange the monovalent ions to bivalent ones:

$$2{\text{Me}}_{1} - {\text{S}} + {\text{Me}}_{2}^{2 + } = {\text{Me}}_{2} - {\text{S}} + 2{\text{Me}}_{1}^{ + }$$
(13)

The indexes 1 and 2 mean the valences of the ions. The equilibrium constant of the process (Eq. 13) is:

$$K_{1,2} = \frac{{a_{2} c_{1}^{2} }}{{a_{1}^{2} c_{2} }}$$
(14)

where the index 1, 2 means that monovalent ions are exchanged to bivalent ions.

The number of exchange sites (ζ) can be expressed both for the monovalent and bivalent ions. For monovalent ions (ζ mono):

$$\zeta_{\text{mono}} = a_{1} + 2a_{2}$$
(15)
$$a_{1} = \zeta_{\text{mono}} - 2a_{2}$$
(16)

Equation 16 can be substituted into Eq. 14, we obtain:

$$K_{1,2} = \frac{{a_{2} c_{1}^{2} }}{{\left( {\zeta_{\text{mono}} - 2a_{2} } \right)^{2} c_{2} }}$$
(17)

and from here

$$1 = \frac{1}{{K_{1,2} }}{ \times }\frac{{a_{2} c_{1}^{2} }}{{\left( {\zeta_{\text{mono}} - 2a_{2} } \right)^{2} c_{2} }}$$
(18)

We make some equivalent mathematical transformations (Eqs. 1921):

$$\frac{{\zeta_{\text{mono}} - 2a_{2} }}{{a_{2} }} = \frac{{\zeta_{\text{mono}} }}{{a_{2} }} - 2 = \frac{1}{{K_{1,2} }}{ \times }\frac{{c_{1}^{2} }}{{\left( {\zeta_{\text{mono}} - 2a_{2} } \right)c_{2} }}$$
(19)
$$c_{2} \left( {\frac{{\zeta_{\text{mono}} }}{{a_{2} }} - 2} \right) = \frac{1}{{K_{1,2} }}\frac{{c_{1}^{2} }}{{\left( {\zeta_{\text{mono}} - 2a_{2} } \right)}}$$
(20)
$$\zeta_{\text{mono}} \frac{{c_{2} }}{{a_{2} }} = 2c_{2 + } \frac{1}{{K_{1,2} }}{ \times }\frac{{c_{1}^{2} }}{{\left( {\zeta_{\text{mono}} - 2a_{2} } \right)}}$$
(21)

Finally, we obtain a c 2/a 2 versus c 2 function (Eq. 22):

$$\frac{{c_{2} }}{{a_{2} }} = \frac{1}{{\zeta_{\text{mono}} }}\left( {2c_{2} + \frac{1}{{K_{1,2} }}\frac{{c_{1}^{2} }}{{\left( {\zeta_{\text{mono}} - 2a_{2} } \right)}}} \right)$$
(22)

Formally, Eq. 22 is a sorption isotherm for the bivalent ions in a monovalent-bivalent ion exchange process.

Similar equation can be also derived for the monovalent ions. In order to do this, consider the reverse reaction of Eq. 13 when bivalent ions are exchanged to monovalent ions:

$${\text{Me}}_{2} - {\text{S}} + 2{\text{Me}}_{1}^{ + } = 2{\text{Me}}_{1} - {\text{S}} + {\text{Me}}_{2}^{2 + }$$
(23)

The equilibrium constant of Eq. 23 is:

$$K_{2,1} = \frac{{c_{2} a_{1}^{2} }}{{c_{1}^{2} a_{2} }} = \frac{1}{{K_{1,2} }}$$
(24)

Equation 24 expresses that the equilibrium constants (K 1,2 and K 2,1) are reciprocal to each other.

From Eq. 15, we can express a 2:

$$a_{2} = \frac{{\zeta_{\text{mono}} - a_{1} }}{2}$$
(25)

By substituting Eq. 25 into Eq. 24, we obtain:

$$K_{2,1} = \frac{{c_{2} a_{1}^{2} }}{{c_{1}^{2} \frac{{\zeta_{\text{mono}} - a_{1} }}{2}}}$$
(26)

Equation 26 is transformed as Eq. 17 (details in Eqs. 1821):

$$\frac{{c_{1} }}{{a_{1} }} = \frac{1}{{\zeta_{\text{mono}} }}\left( {c_{1} + \frac{2}{{K_{2,1} }}\frac{{c_{2} a_{1} }}{{c_{1} }}} \right)$$
(27)

As mentioned previously in this paragraph, the number of exchange sites can be expressed to bivalent ions (ζ bi) as follows:

$$\zeta_{\text{bi}} = \frac{{a_{1} }}{2} + a_{2}$$
(28)

From here the concentration of the ion in the solid ion exchanger are:

$$a_{1} = 2\left( {\zeta_{\text{bi}} - a_{2} } \right)$$
(29)
$$a_{2} = \zeta_{\text{bi}} - \frac{{a_{1} }}{2}$$
(30)

By substituting Eqs. 29 and 30 into Eqs. 17 and 24, respectively, and after similar mathematical transformations, we obtain the c 2/a 2 versus c 2 functions:

$$\frac{{c_{2} }}{{a_{2} }} = \frac{1}{{\zeta_{\text{bi}} }}\left( {c_{2} + \frac{1}{{K_{1,2} }}\frac{{c_{1}^{2} }}{{2^{2} { \times }\left( {\zeta_{\text{bi}} - a_{2} } \right)}}} \right)$$
(31)
$$\frac{{c_{1} }}{{a_{1} }} = \frac{1}{{\zeta_{\text{bi}} }}\left( {\frac{1}{2}c_{1} + \frac{1}{{K_{2,1} }}\frac{{a_{1} c_{2} }}{{c_{1} }}} \right)$$
(32)

Similarly, the reaction equations and equilibrium constants of monovalent and trivalent, bivalent and trivalent ions, respectively, can be described. The number of exchange sites can be expressed all for the mono, bi and trivalent cations; and from here the c/a versus c functions can be derived. These functions are summarized in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, N.M., Kovács, E.M. & Kónya, J. Ion exchange isotherms in solid: electrolyte solution systems. J Radioanal Nucl Chem 308, 1017–1026 (2016). https://doi.org/10.1007/s10967-015-4536-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4536-0

Keywords

Navigation