Skip to main content
Log in

Preparation of 99Mo from the 100Mo(γ, n) reaction and chemical separation of 99mTc

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radionuclide 99Mo has been prepared by 100Mo(γ, n) reaction using two types of natural molybdenum compound (molybdenum trioxide and zirconium molybdate gel) with the bremsstrahlung end-point energies of 10 and 15 MeV. After the equilibrium, 99mTc was separated as NaTcO4 from the irradiated samples using two different chemical procedures to examine the chemical yield. The separated Na[99mTc]TcO4 from the ZrMo gel has the 99Mo breakthrough of <10−4 %, radiochemical purity >99 % as well as chemical impurities of Al, Mo and Zr < 10 ppm. The estimation of 99Mo and 99mTc was done by using off-line γ-ray spectrometric technique. The chemical yield of the separated 99mTc from the dissolved molybdenum trioxide is 70.7–75.2 %, whereas in the undissolved zirconium molybdate gel, it is 19.1–43 %. The second method is preferable because it is user friendly in hospital radiopharmacy throughout the shelf-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Atomic Energy Agency (2004) Nuclear technology review, annex VIII: the socio-economics of nuclear applications: a perspective. Vienna, pp 85–94

  2. Groth S (2000) Nuclear application in health care-lasting benefits. IAEA Bull 42(1):35–38

    Google Scholar 

  3. Cameron CB (1970) Diagnostic uses of radioisotopes in medicine. J Clin Pathol 23(3):280

    Article  Google Scholar 

  4. Schiepers C (ed) (2006) Diagnostic nuclear medicine, 2nd rev edn. Spinger, Berlin

    Google Scholar 

  5. Buckley PT, Filby RH, Dugan DL, Elliston JT, Lessman J, Paulenova A (2006) Radioisotopes in medicine: preparing a 99mT generator and determining its efficiency. J Chem Educ 83:625–627

    Article  CAS  Google Scholar 

  6. Cook GJR, Maisey MN, Britton KE, Chengazi Vaseem (2006) Clinical nuclear medicine, Fourth Edition (CRC Press, Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300) Bock Raton, FL 33487–2742), pp 1–78

  7. Cook GJR (2003) Oncological molecular imaging: nuclear medicine techniques. Br J Radiol 76:S152–S158

    Article  CAS  Google Scholar 

  8. National Council of Radiation Protection and Measurements(NCRP) (1996) Sources and magnitude of occupational andpublic exposures from nuclear medicine procedures. NCRP report no. 124, March 1996

  9. International Atomic Energy Agency (2003) Categorizationof radioactive sources—revision of IAEA–TECDOC-1191. Categorizationof radioactive sources—IAEA–TECDOC-1344, Vienna

  10. Ruth T (2009) Accelerating production of medical isotopes. Nature 457:536–537

    Article  CAS  Google Scholar 

  11. International Atomic Energy Agency (2010) Nuclear technologyreview, annex VIII: production and supply of 99Mo—IAEA/NTR/2010. Vienna, pp 150–167

  12. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions IAEA–TECDOC-1211

  13. Gambini PJ, Cabral P, Alonso O, Savio E, Figueroa SD, Zhang X, Ma L, Deutscher SL, Quinn TP (2011) Evaluation of 99mTc-glucarateas a breast cancer imaging agent in a xenograft animal model. Nucl Med Biol 38:255–260

    Article  CAS  Google Scholar 

  14. Tera´n MA, Martı´nez E, Reyes AL, Paolino A, Vital M, Espero´n P, Pacheco JP, Savio E (2011) Biological studies in animal models using [99mTc](CO)3 recombinant annex in V as diagnostic agent of apoptotic processes. Nucl Med Biol 38:279–285

    Article  Google Scholar 

  15. NuDat 2.6 (2011) National Nuclear Data Center Brookhaven National Laboratory. http://www.nndc.bnl.gov/

  16. Browne E and Firestone RB (1986), in Table of Radioactive Isotopes, edited by Shirley VS (Wiley, New York; Firestone RB and Ekstrom LP (2004), in Table of Radioactive Isotopes, Version 2.1. [http://ie.lbl.gov/toi/index.asp]

  17. Blachot J, Fiche Ch (1981) Table of radioactive isotopes and their main decay characteristics. Ann Phys 6:3–218

    CAS  Google Scholar 

  18. Villiers WZ (1994) The management of radioactive waste from fission 99Mo production. Int Top Meet Nucl Hazard Waste Manag 2190–2192

  19. Lagunas-Solar MC, Zeng MS, Mirshad I, Castaneda C (1996) Cyclotron production of 99Mo via proton-induced 238U fission. Transl Am Nucl Soc 74:134–335

    Google Scholar 

  20. Gagnon K, Bénard F, Kovacs Ruth TJ, Schaffer P, Wilson JS (2011) Cyclotron production of 99mTc: experimental measurement of the 100Mo(p, x) 99Mo, 99mTc and 99gTc excitation function from 8 to 18 MeV. Nucl Med Biol 38:907–916

    Article  CAS  Google Scholar 

  21. Medical Isotope Production without Enriched Uranium (2009) Alternative 99Mo production process. http://www.nap.edu/openbook.phn

  22. Takacs S, Szucs Z, Tarkanyi F, Hermanne A, Sonck M (2003) Evaluation of proton-induced reactions on 100Mo: new cross sections for the production of 99mTc and 99Mo. J Radioanal Nucl Chem 257:195–201

    Article  CAS  Google Scholar 

  23. Lagunas-Solar MC, Zeng MS, Mirshad I, Grey-Morgan T (1996) An update on the direct production of 99mTc with proton beams and enriched 100Mo targets. Trans Ann Nucl Sci 74:137

    Google Scholar 

  24. Ross C, Galea R, Saull P, Davidson W, Brown P, Brown D, Harvey J, Messina G, Wassenaar R, De Jong M (2010) Using the 100Mo photo-neutron reaction to meet Canada’s requirement for 99mTc. Phys Canada/La Physau Canada 66(1):19–24

    Google Scholar 

  25. Segey D et al (2010) Argonne activities for the production of 99Mo using linac irradiation of 100Mo, In: RERTR 2010-32nd international meeting on reduced enrichment for research and test reactor, SANA Lisboa Hotel, Lisborn, Portugal 2010 Oct 10–14

  26. Sabel’nikov AV, Maslov OD, Molokanova LG, Gustova MV, Dmitriev SN (2006) Preparation of 99Mo by 100Mo(γ, n) photonuclear reactionon an electron accelerator, MT-25 microtron. Radiochem Engl Transl 48:91

    Google Scholar 

  27. Naik H, Suryanarayana SV, Jagadeesan KC, Thakare SV, Joshi PV, Nimje VT, Mittal KC, Goswami A, Venugopal V, Kailas S (2013) An alternative route for the preparation of the medical isotope99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions. J Radioanal Nucl Chem 295:807–816

    Article  CAS  Google Scholar 

  28. Bennett RG, Christian JD, Petti DA, Terry KW, Grover SB (1999) A system of 99mTc production based on distributed electronaccelerators and thermal separation. Nucl Technol 126:102–121

    CAS  Google Scholar 

  29. Saraswathy P, Sarkar SK, Arjun G, Nandy SK, Ramamoorthy N (2004) 99mTc gel generators based on zirconium molybdate-99Mo: III: influence of preparatory conditions of zirconium molybdate-99Mo gel on generator performance. RadiochimActa 92:259–264

    CAS  Google Scholar 

  30. Sarkar SK, Saraswathy P, Arjun G, Ramamoorthy N (2004) High radioactive concentration of 99mTc from a zirconium[99Mo] molybdate gel generator using an acidic alumina column for purification and concentration. Nucl Med Commun 25:609–614

    Article  CAS  Google Scholar 

  31. Le VS (2000) Preparation of chromatographic and solid-solvent extraction 99mTc generator using gel type targets, JAERI-Conference 2000–017

  32. Sanchez-Ocampo A, Bulbulian S (1991) Comparative study of 99Mo-labeled and neutron irradiated zirconium molybdate gels. Appl Radiat Iso 42(11):1073–1076

    Article  CAS  Google Scholar 

  33. Selkas EP, Perricos DC (1969) 99mTc—production based on the extraction with methyl-ethyl ketone. Radiochim Acta 11:56

    Article  Google Scholar 

  34. Robinson GD (1971) A simple manual system for the efficient, routine production of 99mTc by methyl-ethyl-ketone extraction. J Nucl Med 12:459

    Google Scholar 

  35. Chattopadhyay S, Das SS, Barua L (2010) A simple and rapid technique for recovery of 99mTc from low specific activity (n, γ)99Mo based on solvent extraction and column chromatography. App Radiat Isot 68:1–4

    Article  CAS  Google Scholar 

  36. ChattopadhyayS BaruaL, De A, Das SS, KuniyilR Bhaskar P, Pal SS, Sarkar SK, Das MK (2012) A computerized compact module forseparation of 99mTc-radionuclide from molybdenum. App Radiat Isot 70:2631–2637

    Article  Google Scholar 

  37. Evans JV, Moore PW, Shying ME, Sodeau JM (1987) Zirconium molybdate gel as a generator for 99mTc—I. The concept and its evaluation. Int J Radiat App Instr A 38:19–23

    Article  CAS  Google Scholar 

  38. Moore PW, Shying ME, Sodeau JM, Evans JV, Maddalena DJ, Farrington KH (1987) Zirconium molybdate gel as a generator for 99mTc—II. High activity generators. Int J Radia Appl Instr A 38:25–29

    Article  CAS  Google Scholar 

  39. Boyd RE (1997) The gel generator: a viable alternative source of 99mTc for nuclear medicine. App Radiat Isot 48:1027–1033

    Article  CAS  Google Scholar 

  40. Saraswathy P, Sarkar SK, Patel RR, Arora SS, Narasimhan DV (1998) 99mTc gel generators based on zirconium molybdate-99Mo: I. Process standardisation forproduction. Radiochim Acta 83:97–102

    CAS  Google Scholar 

  41. Saraswathy P, Sarkar SK, Ramamoorthy N, Arjun G, Patel RR (1998) 99mTc gel generators based on zirconium molybdate-99Mo:II. Evaluation of preparation and performance. Radiochim Acta 83:103–107

    CAS  Google Scholar 

  42. Monroy-Guzman F, Diaz-Archundia LV, Ramirez AC (2003) Effect of the Zr: Mo ratio on 99mTc generator performance based on zirconium molybdate gels. App Radiat Isot 59:27–34

    Article  CAS  Google Scholar 

  43. Davarpanah MR, Attar Nosrati S, Fazlali M, KazemiBoudani M, Khoshhosn H, Maragheh Ghannadi (2009) Influence of drying conditions of zirconium molybdate gel on performance of 99mTc gel generator. Appl Radiat Isot 67(10):1796–1801

    Article  CAS  Google Scholar 

  44. Le VS (1994) Development of alternative technologies for a gel-type chromatographic 99mTc generator. In Proceedings of the IAEA research coordination meeting, Vienna, 1994

  45. Naik H, Kim GN, Schwengner R, Kim K, Zaman M, Yang SC, Lee MW, Shin SG, Gey Y, Massarczyk R, John R, Junghans A, Wagner A, Goswami A, Cho M-H (2014) Photo-neutron reaction cross-sections for natZr in thebremsstrahlung end-point energies of 12–16 and 45–70 MeV. Eur Phys J A 50:83

    Article  Google Scholar 

  46. Sarkar SK, Kothalkar C, Naskar P, Joshi S, Saraswathy P, Dey AC, Vispute GL, Murhekar VM, Pilkhwal N (2013) Indigenous technology development and standardization of the process for obtaining ready to use sterile sodium pertechnetate-99mTc solution from Geltech generator. Indian J Nucl Med 28(2):70–74

    Article  Google Scholar 

  47. Galea R, Ross C, Wells RG (2014) Reduce, reuse and recycle: a green solution to Canada’s medical isotope shortage. App Radiat Isot 87:148–151

    Article  CAS  Google Scholar 

  48. Gagnon K, Wilson JS, Holt CMB, Abrams DN, McEwan AJB, Mitlin D, McQuarrie SA (2012) Cyclotron production of 99mTc: recycling of enriched 100Mo metal targets. App Radiat Isot 70:685–1690

    Google Scholar 

  49. Moraes V, Marczewski B, Dias CR, Osso Junior JA (2005) Study of gels of molybdenum with cerium in the preparation of generators of 99Mo–99mTc. Braz Arch Biol Technol 48:51–56

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Mukesh Kumar, A.R. Tillu, Mr. Shivchandan, Mr. Rajneesh Tiwary and other staff of electron LINAC at EBC, Kharghar, Navi-Mumbai and for providing the electron beam to carry out the experiments. We are also thankful to Dr. R.K. Rajawat, head APPD and Dr. K. Dasgupta, Associate Director of the BTD group, BARC for their keen interest in the present work and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishna, A., Naik, H., Suryanarayana, S.V. et al. Preparation of 99Mo from the 100Mo(γ, n) reaction and chemical separation of 99mTc. J Radioanal Nucl Chem 308, 431–438 (2016). https://doi.org/10.1007/s10967-015-4481-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4481-y

Keywords

Navigation