Skip to main content
Log in

An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radionuclide 99Mo, which has a half-life of 65.94 h was produced from 238U(γ, f) and 100Mo(γ, n) reactions using a 10 MeV electron linac at EBC, Kharghar Navi-Mumbai, India. This has been investigated since the daughter product 99mTc is very important from a medical point of view and can be produced in a generator from the parent 99Mo. The activity of 99Mo was analyzed by a γ-ray spectrometric technique using a HPGe detector. From the detected γ-rays activity of 140.5 and 739.8 keV, the amount of 99Mo produced was determined. For comparison, the amount of 99Mo from 238U(γ, f) and 100Mo(γ, n) reactions was also estimated using the experimental photon flux from 197Au(γ, n)196Au reaction. The amount of 99Mo from the detected γ-lines is in agreement with the estimated value for 238U(γ, f) and 100Mo(γ, n) reactions. The production of 99Mo activity from 238U(γ, f) and 100Mo(γ, n) reactions is a relevant and novel approach, which provides alternative routes to 235,238U(n, f) and 98Mo(n, γ) reactions, circumventing the need for a reactor. The viability and practicality of the 99Mo production from the 238U(γ, f) and 100Mo(γ, n) reactions alternative to 235,238U(n, f) and 98Mo(n, γ) reactions has been emphasize. An estimate has been also arrived based on the experimental data of present work to fulfill the requirement of DOE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larsson CL (2004) Availability and use of medical isotopes in CANADA. Defense Research and Development Canada (DRDC), Ottawa TM 2004-218, December 2004, OMB no. 0704-0188

  2. International Atomic Energy Agency (2004) Nuclear technology review, annex VIII: the socio-economics of nuclear applications: a perspective. Vienna, pp 85–94

  3. Groth S (2000) Nuclear application in health care-lasting benefits. IAEA Bulletin, 42/1/2000, Vienna

  4. National Council of Radiation Protection and Measurements (NCRP) (1996) Sources and magnitude of occupational and public exposures from nuclear medicine procedures. NCRP report no. 124, March 1996

  5. International Atomic Energy Agency (2003) Categorization of radioactive sources—revision of IAEA–TECDOC-1191. Categorization of radioactive sources—IAEA–TECDOC-1344, Vienna

  6. Ruth T (2009) Accelerating production of medical isotopes. Nature 457:29

    Article  Google Scholar 

  7. International Atomic Energy Agency (2010) Nuclear technology review, annex VIII: production and supply of molybdenum-99—IAEA/NTR/2010. Vienna, pp 150–167

  8. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions IAEA–TECDOC-1211

  9. Gambini PJ, Cabral P, Alonso O, Savio E, Figueroa SD, Zhang X, Ma L, Deutscher SL, Quinn TP (2011) Evaluation of 99mTc-glucarate as a breast cancer Imaging agent in a xenograft animal model. Nucl Med Biol 38:255

    Article  CAS  Google Scholar 

  10. Terán MA, Martínez E, Reyes AL, Paolino A, Vital M, Esperón P, Pacheco JP, Savio E (2011) Biological studies in animal models using [99mTc](CO)3 recombinant annexin V as diagnostic agent of apoptotic processes. Nucl Med Biol 38:279

    Article  Google Scholar 

  11. Browne E, Firestone RB (2004) Table of radioactive isotopes. In: Shirley VS (ed) (1986)

  12. Blachot J, Fiche Ch (1981) Table of radioactive isotopes and their main decay characteristics. Ann Phys 6:3–218

    CAS  Google Scholar 

  13. Villiers WZ (1994) The management of radioactive waste from fission Mo-99 production. Int Top Meet Nucl Hazard Waste Manag 2190–2192

  14. Lagunas-Solar MC et al (1996) Cyclotron production of molibdenum-99 via proton-induced uranium-238 fission. Trans Am Nucl Soc 74:134–335

    Google Scholar 

  15. Gagnon K et al (2011) Cyclotron production of 99mTc: experimental measurement of the 100Mo(p, x) 99Mo, 99mTc and 99gTc excitation function from 8 to 18 MeV. Nucl Med Biol 38:907

    Article  CAS  Google Scholar 

  16. Medical Isotope Production Without Enriched Uranium (2009) Alternative molybdenum-99 production process; URL: http://www.nap.edu/openbook.phn

  17. Takacs S et al (2003) J Radianal Nucl Chem 257:195

    Article  CAS  Google Scholar 

  18. Lagunas-Solar MC et al (1996) Ann Nucl Sci 74:137

    Google Scholar 

  19. Bennett RG et al (1999) A system of 99mTc production based on distributed electron accelerators and thermal separation. Nucl Technol 126:102–121

    CAS  Google Scholar 

  20. Ross C et al (2010) Using the 100Mo photo-neutron reaction to meet Canada’s requirement for 99mTc. La Phys Au Can 66(1)

  21. Segey D et al (2010) Argonne activities for the production of Mo-99 using linac irradiation of Mo-100. In: RERTR 2010-32nd international meeting on reduced enrichment for research and test reactor, SANA Lisboa Hotel, Lisborn, Portugal 2010 October 10–14

  22. Sabel’nikov AV et al (2006) Preparation of 99Mo by 100Mo(γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry 48:91. ISSN: 1066-3632

  23. Uvarov VL et al Electron linac controlling subsystem for isotope production technologies. Work Supported by the Science and Technology Centre in Ukraine under contract no. 2185

  24. Naik H, Nimje VT, Raj D, Suryanarayana SV, Goswami A, Singh S, Acharya SN, Mittal KC, Ganesan S, Chandrachoodan P, Manchanda VK, Venugopal V, Banarjee S (2011) Mass distribution in the bremsstrahlung-induced fission of 232Th, 238U and 240Pu. Nucl Phys A 853:1

    Article  Google Scholar 

  25. Scmitt RA, Sugarman N (1954) Phys Rev 95:1260

    Article  Google Scholar 

  26. Naik H, Nair AGC, Kalsi PC, Pandey AK, Singh RJ, Ramaswami A, Iyer RH (1996) Absolute fission yields in the fast neutron induced fission of 99.9997 atom % pure 238U using Track Etch-cum gamma spectrometric technique. Radiochim Acta 75:69

    CAS  Google Scholar 

  27. Iyer RH, Naik H, Pandey AK, Kalsi PC, Singh RJ, Ramaswami A, Nair AGC (2000) Measurement of absolute fission yields in the fast neutron-induced fission of actinides: 238U, 237Np, 238Pu, 240Pu, 243Am and 244Cm by Track–Etch-cum-gamma ray spectrometry. Nucl Sci Eng 135:135

    Google Scholar 

  28. Nelson WR, Hirayama H, Rogers DWO (1985) MAC report 265

  29. Koning AJ, Hilaire S, Duijvestijn MC (2004) In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology-ND 2004, AIP vol 769, Sept. 26–Oct. 1, 2004. Santa Fe, USA, 2005, p 1154

  30. Bjornholm S, Lynn JE (1980) The double-humped fission barrier. Rev Mod Phys 52:725

    Article  Google Scholar 

  31. Lepretre A, Berger R, Bourgeolis P, Carlos P, Fagot J, Fallou JL, Garganne P, Veyssiere A, Ries H, Gobel R, Kneissl U, Mank G, Stroler H, Wilk W, Kyckbosch D, Jury J (1987) Nucl Phys A 472:533

    Article  Google Scholar 

  32. Ries H, Kneissi U, Mank G, Stroher H, Wilke W, Berger R, Bourgeois P, Carlo P, Fellou JL, Garganne P, Veyssire A, Cardman LS (1984) Phys Lett B 139:254

    Article  Google Scholar 

  33. Ries H, Mank G, Drexler J, Hell R, Huber K, Kneissi U, Ratzek R, Stroher H, Weber J, Wilke W (1984) Phys Rev C 29:2346

    Article  CAS  Google Scholar 

  34. Caldwell JT, Dowdy EJ, Berman BL, Alvarez RA, Meyer P (1980) Giant resonance for the actinide nuclei: photo-neutron and photo-fission cross sections for 235U, 236U, 238U, and 232Th. Phys Rev C 21:1215

    Article  CAS  Google Scholar 

  35. Dicky PA, Akel PA (1975) Phys Rev C 35:501

    Google Scholar 

  36. Veyssier A, Bell H, Berger R, Carlos P, Lepretre A (1973) Nucl Phys A 199:45

    Article  Google Scholar 

  37. Anderl RA, Hall JE, Morrison RC, Struss RG, Yester MV, Zaffarano DJ (1973) Nucl Phys A 212:221

    Article  CAS  Google Scholar 

  38. Mafra OY, Kuniyoshi S, Goldemberg J (1972) Nucl Phys A 186:110

    Article  CAS  Google Scholar 

  39. Beil H, Bergere R, Carols P, Lepretre A, De Miniac A, Veyssiere A (1974) Nucl Phys A 227:427

    Article  CAS  Google Scholar 

  40. Varlamov VV, Ishkhanov BS, Orlin VN, Yu TS, Izv. Rossiiskoi Akademii (2010) Nauk Ser Fiz 74:884

    CAS  Google Scholar 

  41. Jacobs E, Thierens H, De Frenne D, De Clercq D, D’hondr P, De Gelder P, Deruytter AJ (1979) Product yields for the photo-fission of 238U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung. Phys Rev C 19:422

    Article  CAS  Google Scholar 

  42. Thierens H, De Frenne D, Jacobs E, De Clercq A, D’hondt P, Deruytter AJ (1976) Phys Rev C14:1058

    Google Scholar 

  43. Mughabghab SF, Divadeenam M, Holden NE (1981) Neutron resonance and thermal cross sections, vol I. Academic Press, New York

    Google Scholar 

  44. England TR, Rider BF (1989) Evaluation and compilation of fission products yields. ENDF/BVI

  45. Ross C, Galea R, Saull P, Davidson W, Brown P, Brown D, Harvey J, Messina G, Wassenaar R, De Jong M (2010) La Phys Au Can 66:19

    Google Scholar 

  46. Chemerisov SD, Galis AV, Tksec P, Bowers DL, Makarashvili V, Bakel AJ, Harvey JT, Dale GE, Vandegrift GF(2010) 32nd International meeting on reduced enrichment for research and test reactor (RERTR), October 10–14, 2010, SANA Lisboa Hotel, Lisbon, Portugal

  47. DOE solicitation titled “molybdenum-99” DE-FOA-0000323, 29 Apr 2010

Download references

Acknowledgments

The authors are thankful to Dr. R. K. Sinha, Chairman, Atomic Energy Commission for his keen interest in this work. We are also thankful to the staff of electron LINAC at EBC, Kharghar, Navi-Mumbai, India and Dr. L. M. Gantayet, Associate Director of BTD group, BARC for providing the electron beam to carry out the experiment. We thank to Dr. Mukundhan Rangaswami and Dr. S. L. Narasimhan for fruitful discussions. The authors are very much thankful to the reviewer and editorial staff of this journal for their constructive comments and English corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, H., Suryanarayana, S.V., Jagadeesan, K.C. et al. An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions. J Radioanal Nucl Chem 295, 807–816 (2013). https://doi.org/10.1007/s10967-012-1958-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1958-9

Keywords

Navigation