Skip to main content
Log in

Improvements to an explosives detection algorithm based on active neutron interrogation using statistical modeling

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Earlier efforts have identified an algorithm that uses active neutron interrogation to find explosives hidden in cargo containers. This algorithm uses flags, in the form of specific mathematical manipulations of the exiting neutron and photon radiation at different angles, to classify the cargo type, search for hidden explosives, and minimize certain false positives due to cargo heterogeneities. Statistical modeling software has now been applied to the previously-identified flags in an effort to improve the detection algorithm. The new detection models have shown accurate results exceeding 95 % for simplified screening scenarios 80–90 % when more realistic conditions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Descalle M-A, Manatt D, Slaughter D, (2006) Analysis of recent manifests for goods imported through US ports, Report UCRL-TR-225708, Lawrence Livermore National Laboratory

  2. Lehnert A, Kearfott K (2010) The detection of explosive materials: review of considerations and methods. Nucl Technol 172:325–334

    CAS  Google Scholar 

  3. Whetstone Z, Kearfott K (2014) A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301(3):629–639

    Article  CAS  Google Scholar 

  4. Forster RA, Cox LJ, Barrett RF, Booth TE, Briesmeister JF, Brown FB, Bull JS, Geisler GC, Goorley JT, Mosteller RD, Post SE, Prael RE, Selcow EC, Sood A (2004) MCNP Version 5. Nucl Instrum Methods Phys Res B 213:82–86

    Article  CAS  Google Scholar 

  5. Pozzi S, Padovani E, Marseguerra M (2003) MCNP-PoliMi: a Monte-Carlo code for correlation measurements. Nucl Instrum Methods Phys Res A 513:550–558

    Article  CAS  Google Scholar 

  6. Miller EC, Clarke SD, Flaska M, Pozzi S, Padovani E (2011) MCNPX-PoliMi post-processing algorithm for detector response simulations. J Nucl Mater Manag 40(2):34–41

    Google Scholar 

  7. Albright S, Seviour R (2014) Fusion based neutron sources for security applications: neutron techniques. In: Proceedings of the 5th international particle accelerator conference. JACoW, Dresden, Germany

  8. Lehnert A, Kearfott K (2010) Simplified simulation of fast neutron scattering for an explosives detection application. Nucl Sci Eng 168:278–286

    Article  Google Scholar 

  9. Lehnert A, Kearfott K (2011) Preliminary identification of flags for a novel algorithm based approach for explosives detection using neutron interrogation for a simulated idealized cargo container scenario. Nucl Instrum Methods Phys Res A 638:201–205

    Article  CAS  Google Scholar 

  10. Lehnert A, Kearfott K (2011) Simulations for developing a flag based active neutron interrogation method for explosives detection in sea land cargo containers. Nucl Technol 188:97–111

    Google Scholar 

  11. Whetstone Z, Kearfott K (2011) Use of multiple layers of repeating material to effectively collimate an isotropic neutron source. Nucl Technol 176(3):395–413

    Article  CAS  Google Scholar 

  12. Whetstone Z, Kearfott K (2015) A method for using neutron elastic scatter to create a variable neutron beam from a monoenergetic source. Radiat Phys Chem 112:22–28

    Article  CAS  Google Scholar 

  13. Lehnert A, Flaska M, Kearfott K (2011) D-D neutron scatter measurements for an explosives detection technique. Nucl Instrum Methods Phys Res A 693:195–202

    Article  Google Scholar 

  14. Dolan JL, Flaska M, Pozzi S, Chichester DL (2009) Measurement and characterization of nuclear material at Idaho National Laboratory, report: INL/CON 09-16103, Idaho National Laboratory

  15. Clarke SD, Flaska M, Pozzi S, Peerani P (2009) Neutron and gamma-ray cross-correlation measurements of plutonium oxide powder. Nucl Instrum Methods Phys Res A 604:618–623

    Article  CAS  Google Scholar 

  16. Zak T, Clarke SD, Bourne MM, Pozzi S, Xu Y, Downar T, Peerani P (2010) Neutron spectroscopy of plutonium oxide using matrix unfolding approach. Nucl Instrum Methods Phys Res A 622:191–195

    Article  CAS  Google Scholar 

  17. Lehnert A, Kearfott K (2015) A flag based algorithm and associated neutron interrogation system for the detection of explosives in sea-land cargo containers. Radiat Phys Chem 112:13–21

    Article  CAS  Google Scholar 

  18. Lehnert A, Kearfott K (2015) Evaluation of an explosives-detection algorithm for use in sea-land cargo containers, J Radioanal Nucl Chem. doi: 10.1007/s10967-015-4187-1 Accepted 05 May 2015, )

  19. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne L. Lehnert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehnert, A.L., Rothman, E.D. & Kearfott, K.J. Improvements to an explosives detection algorithm based on active neutron interrogation using statistical modeling. J Radioanal Nucl Chem 308, 623–630 (2016). https://doi.org/10.1007/s10967-015-4452-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4452-3

Keywords

Navigation