Skip to main content
Log in

Transport of 125I in compacted GMZ bentonite containing Fe-oxides, Fe-minerals or Cu2O

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A systematic investigation of the transport of 125I in compacted GMZ bentonite containing Fe-Oxides, Fe-minerals or Cu2O additive was carried out by through-diffusion method. The obtained results indicate that all of the additives have positive effects on retarding the 125I diffusion in compacted GMZ bentonite. Especially for the Cu2O additive, the corresponding effective diffusion coefficient is greatly reduced. It is mainly attributed to the particular interactions between the metal ions introduced by additives and iodide ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuge R, Johnson CC (1986) Environ Geochem Health 8:31–54

    Article  CAS  Google Scholar 

  2. Oscarson DW, Hume HB, Sawatsky NG, Cheung SCH (1992) Soil Sci Soc Am J 56:1400–1406

    Article  CAS  Google Scholar 

  3. Dai JL, Zhang M, Zhu YG (2004) Environ Int 30:525–530

    Article  CAS  Google Scholar 

  4. Yim SP, Lee JH, Choi HJ, Choi JW, Lee CK (2011) J Nucl Fuel Cycle Waste Technol 9:33–40

    Article  Google Scholar 

  5. Aimoz L, Curti E, Mäder U (2011) J Radioanal Nucl Chem 288:517–524

    Article  CAS  Google Scholar 

  6. Sazarashi M, Ikeda Y, Seki R, Yoshikawa H (1994) J Nucl Sci Technol 31:620–622

    Article  CAS  Google Scholar 

  7. Lefèvre G, Walcarius A, Ehahardt JJ, Bessière J (2000) Langmuir 16:4519–4527

    Article  Google Scholar 

  8. Lefèvre G, Alnot M, Ehrhardt JJ, Bessière J (1999) Environ Sci Technol 33:1732–1737

    Article  Google Scholar 

  9. Lefèvre G, Bessière J, Ehrhardt JJ, Walcarius A (2003) J Environ Radioact 70:73–83

    Article  Google Scholar 

  10. Lefèvre G, Walcarius A, Bessière J (1999) Electrochim Acta 44:1817–1826

    Article  Google Scholar 

  11. Balsley SD, Brady PV, Krumhansl JL, Anderson HL (1996) Environ Sci Technol 30:3025–3027

    Article  CAS  Google Scholar 

  12. Szczepaniak W, Kościelna H (2002) Anal Chim Acta 470:263–276

    Article  CAS  Google Scholar 

  13. Kentjono L, Liu JC, Chang WC, Irawan C (2010) Desalination 262:280–283

    Article  CAS  Google Scholar 

  14. Sheppard MI, Thibault DH, Mcmurry J, Smith PA (1995) Water Air Soil Pollut 83:51–67

    Article  CAS  Google Scholar 

  15. Bagus PS, Wieckowski A, Wöll C (2010) Int J Quantum Chem 110:2844–2859

    Article  CAS  Google Scholar 

  16. Allard S, von Gunten U, Sahli E, Nicolau R, Gallard H (2009) Water Res 43:3417–3426

    Article  CAS  Google Scholar 

  17. Fox PM, Davis JA, Luther GW (2009) Geochim Cosmochim Acta 73:2850–2861

    Article  CAS  Google Scholar 

  18. Zhang HF, Gao XL, Guo T, Li Q, Liu HN, Ye XS, Cuo M, Wu ZJ (2011) Colloid Surf A 386:166–171

    Article  CAS  Google Scholar 

  19. Gliński M, Ulkowska U (2011) Can J Chem 89:1370–1374

    Article  Google Scholar 

  20. Wu DB, Zhu CM, Chen YG, Zhu BH, Yang YH, Wang QG, Ye WM (2012) Appl Clay Sci 62–63:87–93

    Article  Google Scholar 

  21. Wen ZJ (2006) Chin J Rock Mech Eng 25:794–800

    Google Scholar 

  22. Liu XD, Luo TA, Zhu GP, Chen QC (2007) China Nucl Sci Technol Rep 2:140–156

    Google Scholar 

  23. Qin B, Chen ZH, Liu YM, Wang J (2008) Chin J Geotech Eng 30:1005–1010

    CAS  Google Scholar 

  24. Chen YG, Zhu BH, Wu DB, Wang QG, Yang YH, Ye WM, Guo JF (2012) Chem Eng J 181:387–396

    Article  Google Scholar 

  25. Wang SW, Dong YH, He ML, Chen L, Yu XJ (2009) Appl Clay Sci 43:164–171

    Article  CAS  Google Scholar 

  26. Chen L, Yu SM, Zuo LM, Liu B, Huang LL (2011) J Radioanal Nucl Chem 289:511–520

    Article  CAS  Google Scholar 

  27. Van Loon LR, Soler JM, Bradbury MH (2003) J Contam Hydrol 61:73–83

    Article  Google Scholar 

  28. Van Loon LR, Müller W, Iijima K (2005) Appl Geochem 20:961–972

    Article  Google Scholar 

  29. Chen T, Sun M, Li C, Tian W, Liu X, Wang L, Wang X, Liu C (2010) Radiochim Acta 98:301–305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by National Natural Science Foundation of China (Grant No. 11275147 and Grant No. 21207035), Program for Changjiang Scholars and Innovative Research Team in University (No: IRT1280) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baofeng Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Fu, B., Wu, T. et al. Transport of 125I in compacted GMZ bentonite containing Fe-oxides, Fe-minerals or Cu2O. J Radioanal Nucl Chem 308, 539–544 (2016). https://doi.org/10.1007/s10967-015-4430-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4430-9

Keywords

Navigation