Skip to main content
Log in

Laser spectroscopic characterization and quantification of uranium(VI) under fluorescence quenching by Fe(II)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Spectroscopic characteristics of aqueous uranium(VI) (U(VI)) (0.01–1 μΜ) and its quantification procedure in the presence of Fe(II) (≤0.09 mM) have been developed at pH 7 using TRLFS. The measured fluorescence properties of U(VI) in the phosphate solutions showed the co-presence of UO2HPO4 (aq) and \({\text{UO}}_{2} {\text{PO}_{4}}^{ - }.\) The fluorescence signals of each species were remarkably quenched following dominantly static quenching process via the formation of non-fluorescent complexes. An empirical equation correcting the quenched fluorescence intensity was developed and the corrected values of quenched U(VI) intensity showed a consistency (≥93.39 ± 2.27 %) with the measured uranium concentration by ICP-MS.

Graphical Abstract

We firstly confirmed that aqueous U(VI) quantification by TRLFS can be significantly interrupted by Fe(II) quenching via dominantly a static quenching process. The novel analytical procedure for correcting quenched fluorescence intensity (concentration) of U(VI) was developed based on the relationship of the quenched intensity and Fe(II) concentration at neutral pH.

Fluorescence quenching relations of U(VI) fluorescence intensity and Fe(II) concentration for accurate quantification of U(VI) under F(II) quenching

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cho H-R, Jung EC, Cha W, Song K (2013) Quantitative analysis of uranium in aqueous solutions using a semiconductor laser-based spectroscopic method. Anal Chem 85(9):4279–4283

    Article  CAS  Google Scholar 

  2. Lee J-Y, Yun J-I (2013) Formation of ternary CaUO2(CO3) 2−3 and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans 42(27):9862–9869

    Article  CAS  Google Scholar 

  3. Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77(1):9–20

    Article  CAS  Google Scholar 

  4. Allain P, Berre S, Premelcabic A, Mauras Y, Delaporte T, Cournot A (1991) Investigation of the direct determination of uranium in plasma and urine by inductively coupled plasma mass spectrometry. Anal Chim Acta 251(1–2):183–185

    Article  CAS  Google Scholar 

  5. Lorber A, Karpas Z, Halicz L (1996) Flow injection method for determination of uranium in urine and serum by inductively coupled plasma mass spectrometry. Anal Chim Acta 334(3):295–301

    Article  CAS  Google Scholar 

  6. Jaison PG, Telmore VM, Kumar P, Aggarwal SK (2009) Reversed-phase liquid chromatography using mandelic acid as an eluent for the determination of uranium in presence of large amounts of thorium. J Chromatogr A 1216(9):1383–1389

    Article  CAS  Google Scholar 

  7. Raut NM, Jaison PG, Aggarwal SK (2004) Separation and determination of lanthanides, thorium and uranium using a dual gradient in reversed-phase liquid chromatography. J Chromatogr A 1052(1–2):131–136

    Article  CAS  Google Scholar 

  8. Kumar SA, Shenoy NS, Pandey S, Sounderajan S, Venkateswaran G (2008) Direct determination of uranium in seawater by laser fluorimetry. Talanta 77(1):422–426

    Article  CAS  Google Scholar 

  9. Moulin C, Laszak I, Moulin V, Tondre C (1998) Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation. Appl Spectrosc 52(4):528–535

    Article  CAS  Google Scholar 

  10. Moulin C, Decambox P, Mauchien P (1996) Direct uranium(VI) and nitrate determinations in nuclear reprocessing by time-resolved laser-induced fluorescence. Anal Chem 68(18):3204–3209

    Article  CAS  Google Scholar 

  11. Deniau H, Decambox P, Mauchien P, Moulin C (1993) Time-resolved laser-induced spectrofluorometry of UO2 2+ in nitric acid solutions. Preliminary results for on-line uranium monitoring applications. Radiochim Acta 61(1):23–28

    Article  CAS  Google Scholar 

  12. Zook AC, Collins LH, Pietri CE (1981) Determination of nanogram quantities of uranium by pulsed-laser fluorometry. Mikrochim Acta 76(5–6):457–468

    Article  Google Scholar 

  13. Blackburn R, Al-Masri MS (1994) Determination of uranium by liquid scintillation and cerenkov counting. Analyst 119:465–468

    Article  CAS  Google Scholar 

  14. Hiefthe GM (1981) Correction of quenching errors in analytical fluorimetry through use of time resolution. Anal Chim Acta 123:255–261

    Article  Google Scholar 

  15. Maji S, Sundararajan K, Viswanathan KS (2000) Correction for quenching in fluorimetric determinations using steady state fluorescence. Spectrochim Acta A 56:1251–1256

    Article  Google Scholar 

  16. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  17. Matsushi R (1972) Mechanism of quenching of uranyl fluorescence by organic compounds. J Am Chem Soc 94(17):6010–6016

    Article  Google Scholar 

  18. Matsushi R, Fujimori H, Sakuraba S (1974) Quenching of uranyl (UO2 2+) emission by inorganic ions in solution. J Chem Soc Faraday Trans 1(70):1702–1709

    Article  Google Scholar 

  19. Matsushi R, Sakuraba S (1971) Quenching of uranyl fluorescence by aromatic molecules. J Am Chem Soc 93(26):7143–7145

    Article  Google Scholar 

  20. Burrows HD, Cardoso AC, Formosinho SJ, Miguel MDM (1985) Photophysics of the excited uranyl ion in aqueous solutions. Part 4. Quenching by metal ions. J Chem Soc Faraday Trans 1(81):49–60

    Article  Google Scholar 

  21. Moriyasu M, Yokoyama Y, Ikeda S (1977) Quenching mechanisms of uranyl luminescence by metal ions. J Inorg Nucl Chem 39(12):2205–2209

    Article  CAS  Google Scholar 

  22. Veselsky JC, Kwiecinska B, Wehrstein E, Suschny O (1988) Determination of uranium in minerals by laser fluorimetry. Analyst 113(3):451–455

    Article  CAS  Google Scholar 

  23. Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  24. Cha W, Lee SY, Jung EC, Cho H-R, Baik MH (2014) Determination of U(VI) and U(IV) concentrations in aqueous samples containing strong luminescence quenchers using TRLFS. J Radioanal Nucl Chem 302(3):1127–1136

    Article  CAS  Google Scholar 

  25. Demas JN, Jones WM, Keller RA (1986) Elimination of quenching effects in luminescence spectrometry by phase resolution. Anal Chem 58:1717–1721

    Article  CAS  Google Scholar 

  26. Sowder AG, Clark SB, Fjeld RA (1998) The effect of sample matrix quenching on the measurement of trace uranium concentration in aqueous solutions using kinetic phosphorimetry. J Radioanal Nucl Chem 234(1–2):257–260

    Article  CAS  Google Scholar 

  27. Brendler V, Geipel G, Bernhard G, Nitsche H (1996) Complexation in the system UO2 2+/PO4 3−/OH(aq): potentiometric and spectroscopic investigations at very low ionic strengths. Radiochim Acta 74:75–80

    Article  CAS  Google Scholar 

  28. Bonhoure I, Meca S, Marti V, Pablo JD, Cortina JL (2007) A new time-resolved laser-induced fluorescence spectrometry (TRLFS) data acquisition procedure applied to the uranyl-phosphate system. Radiochim Acta 95:165–172

    Article  CAS  Google Scholar 

  29. Chakraborty S, Favre F, Banerjee D, Scheinost AC, Mullet M, Ehrhardt JJ, Brendle J, Vidal L, Charlet L (2010) U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ Sci Technol 44(10):3779–3785

    Article  CAS  Google Scholar 

  30. Descostes M, Schlegel ML, Eglizaud N, Descamps F, Miserque F, Simoni E (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta 74(5):1551–1562

    Article  CAS  Google Scholar 

  31. Ohnuki T, Isobe H, Yanase N, Nagano T, Sakamoto Y, Sekine K (1997) Change in sorption characteristics of uranium during crystallization of amorphous iron minerals. J Nucl Sci Technol 34(12):1153–1158

    Article  CAS  Google Scholar 

  32. O’Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM (2003) Reduction of uranium(VI) by mixed iron(II/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ Sci Technol 37(4):721–727

    Article  Google Scholar 

  33. Sato T, Murakami T, Yanase N, Isobe H, Payne TE, Airey PL (1997) Iron nodules scavenging uranium from groundwater. Environ Sci Technol 31(10):2854–2858

    Article  CAS  Google Scholar 

  34. Scott TB, Allen GC, Heard PJ, Randell MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Ac 69(24):5639–5646

    Article  CAS  Google Scholar 

  35. Amir A, Lee W (2012) Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin(III) by nano-mackinawite. J Hazard Mater 235:359–366

    Article  Google Scholar 

  36. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42(7):779–781

    Article  CAS  Google Scholar 

  37. Scapolan S, Ansoborlo E, Moulin C, Madic C (1998) Investigations by time-resolved laser-induced fluorescence and capillary electrophoresis of the uranyl-phosphate species: application to blood serum. J Alloy Compd 271:106–111

    Article  Google Scholar 

  38. Cha W, Cho H-R, Jung EC, Park KK, Kim WH, Song K (2012) Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria. Radiochim Acta 100:371–379

    Article  CAS  Google Scholar 

  39. Michon J, Frelon S, Garnier C, Coppin F (2010) Determinations of uranium(VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching. J Fluoresc 20(2):581–590

    Article  CAS  Google Scholar 

  40. Hua B, Deng BL (2008) Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ Sci Technol 42(23):8703–8708

    Article  CAS  Google Scholar 

  41. Hyun SP, Davis JA, Sun K, Hayes KF (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ Sci Technol 46(6):3369–3376

    Article  CAS  Google Scholar 

  42. Lee W, Batchelor B, Schlautman MA (2003) Reductive capacity of soils for chromium. Environ Technol 21(8):953–965

    Article  CAS  Google Scholar 

  43. Lee SY, Baik MH, Choi JW (2010) Biogenic formation and growth of uraninite (UO2). Environ Sci Technol 44(22):8409–8414

    Article  CAS  Google Scholar 

  44. Lovley DR, Phillips EJP (1992) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26(11):2228–2234

    Article  CAS  Google Scholar 

  45. Zhang GX, Senko JM, Kelly SD, Tan H, Kemner KM, Burgos WD (2009) Microbial reduction of iron(III)-rich nontronite and uranium(VI). Geochim Cosmochim Ac 73(12):3523–3538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF-2012M1A2A2026588) Grant funded by the Ministry of Science, ICT & Future Planning, the GAIA project (2014000550004) funded by the Korean Ministry of Environment, and the Korea Radiation Safety Foundation (KORSAFe-1305032-0113-SB110) funded by the Nuclear Safety and Security Commission (NSSC), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Il Yun or Woojin Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihn, Y., Yun, JI. & Lee, W. Laser spectroscopic characterization and quantification of uranium(VI) under fluorescence quenching by Fe(II). J Radioanal Nucl Chem 308, 413–423 (2016). https://doi.org/10.1007/s10967-015-4428-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4428-3

Keywords

Navigation