Skip to main content
Log in

Determination of U(VI) and U(IV) concentrations in aqueous samples containing strong luminescence quenchers using TRLFS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Novel luminescence (LM) spectroscopy-based uranium (U) analysis methods are developed for aqueous samples containing strong LM quenchers. Reducing agents often found in biological samples, such as thiols, ascorbate and Fe(II) ions, are identified as the major strong quencher species. A strategy to selectively oxidize the reducing moieties of the quencher species using monopersulfate (the selected oxidant) is employed to rapidly reduce the LM quenching effects. Without requiring conventional sample pre-processing (ashing) procedures this method improves the limit of detection of U(VI) (~nM levels) and enables rapid and simultaneous determination of U(VI) and U(IV) dissolved in biological samples containing strong quenchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brina R, Miller AG (1992) Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal Chem 64:1413–1418

    Article  CAS  Google Scholar 

  2. Moore LL, Williams RL (1992) A rapid method for determining nanogram quantities of uranium in urine using the kinetic phosphorescence analyzer. J Radioanal Nucl Chem 156(1):223–233

    Article  CAS  Google Scholar 

  3. Elliston JT, Glover SE, Filby RH (2001) The determination of natural uranium in human tissues by recovery corrected kinetic phosphorescence analysis. J Radioanal Nucl Chem 248(2):487–491

    Article  CAS  Google Scholar 

  4. Hedaya MA, Birkenfeld HP, Kathren RL (1997) A sensitive method for the determination of uranium in biological samples utilizing kinetic phosphorescence analysis (KPA). J Pharm Biomed Anal 15:1157–1165

    Article  CAS  Google Scholar 

  5. Sowder AG, Clark SB, Fjeld RA (1998) The effect of sample matrix quenching on the measurement of trace uranium concentrations in aqueous solutions using kinetic phosphorimetry. J Radioanal Nucl Chem 234(1–2):257–260

    Article  CAS  Google Scholar 

  6. Ejnik JW, Hamilton MM, Adams PR, Carmichael AJ (2000) Optimal sample preparation conditions for the determination of uranium in biological samples by kinetic phosphorescence analysis (KPA). J Pharm Biomed Anal 24:227–235

    Article  CAS  Google Scholar 

  7. Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  8. Phillips EJP, Landa ER, Lovely DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207

    Article  CAS  Google Scholar 

  9. Francis AJ, Dodge CJ (2008) Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility. Environ Sci Technol 42:8277–8282

    Article  CAS  Google Scholar 

  10. Sivaswamy V, Boyanov MI, Peyton BM, Viamajala S, Gerlach R, Apel WA, Sani RK, Dohnalkova A, Kemner KM, Borch T (2011) Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol Bioeng 108(2):264–276

    Article  CAS  Google Scholar 

  11. Röllin S, Eklund U-B (2000) Determination of U(IV) and U(VI) by ion chromatography-inductively coupled plasma mass spectrometry and its application to kinetic studies. J Chromatogr A 884(1–2):131–141

    Article  Google Scholar 

  12. Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16

    Article  CAS  Google Scholar 

  13. Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium. North-Holland, Amsterdam

    Google Scholar 

  14. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Nanometre-size products of uranium bioreduction. Nature 419:134

    Article  CAS  Google Scholar 

  15. Kraus KA, Nelson F (1950) Hydrolytic behavior of metal ions. I. The acid constants of uranium(IV) and plutonium(IV). J Am Chem Soc 72(9):3901–3906

    Article  CAS  Google Scholar 

  16. Ganesh R, Robinson KG, Reed GD, Sayler G (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391

    CAS  Google Scholar 

  17. Gorby YA, Lovely DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207

    Article  CAS  Google Scholar 

  18. Lovely DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58(3):850–856

    Google Scholar 

  19. Sani RK, Peyton BM, Amonette JE, Geesey GG (2004) Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr)oxides. Geochim Cosmochim Acta 68(12):2639–2648

    Article  CAS  Google Scholar 

  20. Jung EC, Cho H-R, Park KK, Yeon J-W, Song K (2009) Nanoparticle sizing by a laser-induced breakdown detection using an optical probe beam deflection. Appl Phys B 97:867–875

    Article  CAS  Google Scholar 

  21. Cohen D, Carnall WT (1960) Absorption spectra of uranium(III) and uranium(IV) in DClO4 solution. J Phys Chem 64:1933–1936

    Article  CAS  Google Scholar 

  22. Cha W, Cho H-R, Park KK, Jung EC, Kim W, Song K (2012) Spectroscopic studies on U(VI)–salicylate complex formation with multiple equilibria. Radiochim Acta 100:371–379

    Article  CAS  Google Scholar 

  23. Lee SY, Baik MH, Cho H-R, Jung EC, Jeong JT, Choi JW, Lee YB, Lee YJ (2013) Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition. J Radioanal Nucl Chem 296(3):1311–1319

    Article  CAS  Google Scholar 

  24. Lakowicz JR (2006) Quenching of fluorescence. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy. Springer, New York

    Chapter  Google Scholar 

  25. Cha W, Cho H-R, Jung EC (2013) Studies of aqueous U(VI)–thiosalicylate complex formation via UV–Vis absorption spectrophotometry, TRLFS and potentiometry. Polyhedron 55:201–208

    Article  CAS  Google Scholar 

  26. Travis BR, Ciaramitaro BP, Borhan B (2002) Preparation of purified KHSO5·H2O and nBu4NHSO5 from oxone by simple and efficient methods. Eur J Org Chem 20:3429–3434

    Article  Google Scholar 

  27. Hajipour AR, Mallakpour SE, Adibi H (2002) Selective and efficient oxidation of sulfides and thiols with benzyltriphenylphosphonium peroxymonosulfate in aprotic solvent. J Org Chem 67:8666–8668

    Article  CAS  Google Scholar 

  28. Travis BR, Sivakumar M, Hollist GO, Borhan B (2003) Facile oxidation of aldehydes to acids and esters with oxone. Org Lett 5(7):1031–1034

    Article  CAS  Google Scholar 

  29. Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 20:4790–4797

    Article  Google Scholar 

  30. Guan Y-H, Ma J, Li X-C, Fang J-Y, Chen L-W (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ Sci Technol 45(21):9308–9314

    Article  CAS  Google Scholar 

  31. Baumstark AL, Beeson M, Vasquez PC (1989) Dimethyldioxirane: mechanism of benzaldehyde oxidation. Tetrahedron Lett 30(41):5567–5570

    Article  CAS  Google Scholar 

  32. Webster FX, Rivas-Enterrios J, Silverstein RM (1987) Synthesis of diacids and keto-acids by ruthenium tetraoxide-catalyzed oxidation of cyclic allylic alcohols and α-, β-unsaturated ketones. J Org Chem 52(4):689–691

    Article  CAS  Google Scholar 

  33. Tsai CS (ed) (2007) Studies of biomacromolecular structures. In: Biomacromolecules: introduction to structure, functions and informatics. Wiley, Hoboken, p 188

  34. Grinstead RR (1960) The oxidation of ascorbic acid by hydrogen peroxide. Catalysis by ethylenediaminetetraacetato–iron(III). J Am Chem Soc 82(13):3464–3471

    Article  CAS  Google Scholar 

  35. Deutsch JC (1998) Spontaneous hydrolysis and dehydration of dehydroascorbic acid in aqueous solution. Anal Biochem 255:223–229

    Article  Google Scholar 

  36. Bonhoure I, Meca S, Marti V, Pablo JD, Cortina J-L (2007) A new time-resolved laser-induced fluorescence spectrometry (TRLFS) data acquisition procedure applied to the uranyl–phosphate system. Radiochim Acta 95:165–172

    CAS  Google Scholar 

  37. Merkusheva SA, Skorik NA, Kumok VN, Serebrennikov VV (1967) Thorium and uranium(IV) pyrophosphates. Sov Radiochem 9:683–685

    Google Scholar 

  38. Francis AJ, Dodge CJ, Lu F, Halada GP, Clayton CR (1994) XPS and XANES studies of uranium reduction by Clostridium sp. Environ Sci Technol 28:636–639

    Article  CAS  Google Scholar 

  39. Lovely DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  Google Scholar 

  40. Haas JR, Northup A (2004) Effects of aqueous complexation on reductive precipitation of uranium by Shewanella putrefaciens. Geochem Trans 5(3):41–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Hye Jeong Kwon who performed ICP-AES analyses of the biological samples at RAL-KAERI. This work was financially supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (Grant code: 2012M2A8A5025924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, W., Lee, S.Y., Jung, E.C. et al. Determination of U(VI) and U(IV) concentrations in aqueous samples containing strong luminescence quenchers using TRLFS. J Radioanal Nucl Chem 302, 1127–1136 (2014). https://doi.org/10.1007/s10967-014-3319-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3319-3

Keywords

Navigation