Skip to main content
Log in

Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Rice straw-based biochars modified with different chemical regents were used as an adsorbent for uranium(VI). Effect of pyrolysis temperature and nature of modifying agent’s as well as surface chemistry, surface charge, and pore structure on U(VI) removal was investigated. Amount and nature of the surface groups has, in general, more influence than its porosity on U(VI) adsorption. The adsorption was maximum for the initial pH of 5.5. Rice straw derived biochars had comparable U(VI) adsorption as compared to other adsorbents. The U(VI) removal was 90 % from groundwater. NaHCO3 was found to be the most efficient desorbent eluent for U(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McDiarmid MA, Gaitens JM, Squibb KS (2012) Patty’s industrial hygiene and toxicology. In: Bingham E, Cohrssen B (eds) Uranium and thorium, 6th edn. John Wiley, New York

    Google Scholar 

  2. Malczewska-Toth B, Lewis J (2003) Recommendations for a uranium health-based ground water standard. Environment Department Ground Water Quality Bureau, New Mexico

    Google Scholar 

  3. Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101(3):267–276. doi:10.1016/j.jenvrad.2009.12.001

    Article  CAS  Google Scholar 

  4. Myroslay S, Tomasz K, Hlanganani T, Ewa M, Boguslaw B (2011) Adsorption performance of talc for uranium removal from aqueous solution. Chem Eng J 171:1185–1193

    Article  Google Scholar 

  5. Sabriye Y, Erenturk S (2011) Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalin 269:58–66

    Article  Google Scholar 

  6. Joseph C, Schmeide K, Sachs S, Brendler V, Geipel G, Bernhard G (2011) Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water. Chem Geol 284:240–250

    Article  CAS  Google Scholar 

  7. Sachs S, Brendler V, Geipel G (2007) Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced spectroscopy. Radiochim Acta 95:103–110

    Article  CAS  Google Scholar 

  8. Schmeide K, Bernhard G (2009) Redox stability of neptunium(V) and neptunium(IV) in the presence of humic substances of varying functionality. Radiochim Acta 97(11):603–611

    Article  CAS  Google Scholar 

  9. Zhang ZB, Cao XH, Liang P, Liu YH (2013) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295:1201–1208

    Article  CAS  Google Scholar 

  10. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manag 92(10):2504–2512. doi:10.1016/j.jenvman.2011.05.013

    Article  CAS  Google Scholar 

  11. Liu Y-H, Wang Y-Q, Zhang Z-B, Cao X-H, Nie W-B, Li Q, Hua R (2013) Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl Surf Sci 273:68–74. doi:10.1016/j.apsusc.2013.01.182

    Article  CAS  Google Scholar 

  12. Wang S, Ma Q, Zhu ZH (2009) Characteristics of unburned carbons and their application for humic acid removal from water. Fuel Process Technol 90:375–380

    Article  CAS  Google Scholar 

  13. Wimonrat T, Manop S, Phunsiri H (2011) Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties (Citations: 4). Chem Eng Res Des 89:335–340

    Article  Google Scholar 

  14. Bu J, Loh G, Gwie GG, Dewiyanti S, Tasrif M, Borgna A (2011) Desulfurization of diesel fuels by selective adsorption on activated carbons: competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons. Chem Eng J 166(2011):207–217

    Article  CAS  Google Scholar 

  15. Li Q, Wang D, Wu Y, Li W, Zhang Y, Xing J, Su Z (2010) One step recovery of succinic acid from fermentation broths by crystallization. Sep Purif Technol 72:294–300

    Article  CAS  Google Scholar 

  16. Zhang CX, Zhang R, Xing B (2010) Effect of pore structure on the electrochemical performance of coal-based activated carbons in non-aqueous electrolyte. New Carbon Mater 25(2):129–133

    Article  Google Scholar 

  17. Hernandez-Ramirez O, Holmes SM (2008) Novel and modified materials for wastewater treatment applications. J Mater Chem 18:2751–2761

    Article  CAS  Google Scholar 

  18. Hubbe MA, Hasan SH, Ducoste JJ (2011) Cellulosic substrates for removal of pollutants from aqueous systems: a review. 1. Metals. BioResour 6:2161–2287

    Google Scholar 

  19. Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181(1–3):121–126. doi:10.1016/j.jhazmat.2010.04.103

    Article  CAS  Google Scholar 

  20. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45(22):9473–9483. doi:10.1021/es201792c

    Article  CAS  Google Scholar 

  21. Hameed BH, El-Khaiary MI (2008) Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J Hazard Mater 153(1–2):701–708. doi:10.1016/j.jhazmat.2007.09.019

    Article  CAS  Google Scholar 

  22. Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100(21):5348–5351. doi:10.1016/j.biortech.2009.05.054

    Article  CAS  Google Scholar 

  23. Lima IM, Boateng AA, Klasson KT (2010) Physicochemical and adsorptive properties of fast-pyrolysis biochars and their steam activated counterparts. J Chem Technol Biotechnol 85(11):1515–1521

    CAS  Google Scholar 

  24. Xu RK, Xiao SC, Yuan JH, Zhao AZ (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102(22):10293–10298. doi:10.1016/j.biortech.2011.08.089

    Article  CAS  Google Scholar 

  25. Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B (2011) Sorption of bisphenol A, 17alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour Technol 102(10):5757–5763. doi:10.1016/j.biortech.2011.03.038

    Article  CAS  Google Scholar 

  26. Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102(19):8877–8884. doi:10.1016/j.biortech.2011.06.078

    Article  CAS  Google Scholar 

  27. Daifullah AA, Yakout SM, Elreefy SA (2007) Adsorption of fluoride in aqueous solutions using KMnO4− modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147(1–2):633–643. doi:10.1016/j.jhazmat.2007.01.062

    Article  CAS  Google Scholar 

  28. El-Hendawy AA (2003) Influence of HNO3 oxidation on the structured and adsorptive properties of corncob activated carbon. Carbon 41:713–722

    Article  CAS  Google Scholar 

  29. Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41(4):811–821

    Article  CAS  Google Scholar 

  30. Youssef AM, Ghazy TM, EL-Nabaiuwy TH (1982) Moisture sorption by modified-activated carbons. Carbon 20(2):113

    Article  CAS  Google Scholar 

  31. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769

    Article  CAS  Google Scholar 

  32. Leon Y, Leon CA, Solar JM, Calemma V, Radovic LR (1992) Evidence for the protonation of basal plane sites on carbon. Carbon 30:797

    Article  Google Scholar 

  33. Tuovinen H, Vesterbacka D, Pohjolainen E, Read D, Solatie D, Lehto J (2015) A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. J Geochem Explor 148:174–180. doi:10.1016/j.gexplo.2014.09.004

    Article  CAS  Google Scholar 

  34. Metwally SS, El-Gammal B, Aly HF, Bo-El-Enein SA (2011) Removal and separation of some radionuclides by poly-acrylamide based Ce(IV) phosphate from radioactive waste solutions. Sep Sci Technol 46(11):1808–1821

    Article  CAS  Google Scholar 

  35. Marczenko Z (1986) Spectrophotometric determination of elements. John Wiley and Sons Inc., New York

    Google Scholar 

  36. Pradhan BK, Sandles NK (1999) Carbon 37:1323–1332

    Article  CAS  Google Scholar 

  37. Martin-Gullon I, Marco-Lozar JP, Cazorla-Amoros D, Linares-Solano A (2004) Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons. Carbon 42:1339–1343

    Article  CAS  Google Scholar 

  38. Guo J, Lua AC (1999) Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation. Microporous and Mesoporous Mater 32:111–117

    Article  CAS  Google Scholar 

  39. Korili SA, Gil AA (2001) On the application of various methods to evaluate the microporous properties of activated carbons. Adsorption 7:249–264

    Article  CAS  Google Scholar 

  40. Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149

    Article  CAS  Google Scholar 

  41. Teng H, Tu Y-T, Lai Y-C, Lin C-C (2001) Reduction of NO with NH over carbon catalysts 3 The effects of treating carbon with H SO and HNO 2 4 3. Carbon 39:575–582

    Article  CAS  Google Scholar 

  42. Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM (2001) The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mater 50(2–3):173–179. doi:10.1016/S1387-1811(01)00445-0

    Article  CAS  Google Scholar 

  43. Montes-Moran M, Angel Menendez J, Fuente E, Suarez D (1998) Contribution of the basal planes to carbon basicity: an Ab initio study of the H3O+π interaction in cluster models. J Phys Chem B 102:5595–5601

    Article  CAS  Google Scholar 

  44. Rivera-Utrilla J, Sanchez-Polo M (2003) Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions. Water Res 37(14):3335–3340. doi:10.1016/S0043-1354(03)00177-5

    Article  CAS  Google Scholar 

  45. Akyil S, Aslani MA, Eral M (2003) Sorption characteristics of uranium onto composite ion exchangers. J Radioanal Nucl Chem 256(1):45–51

    Article  CAS  Google Scholar 

  46. Starvin AM, Rao TP (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63(2):225–232. doi:10.1016/j.talanta.2003.11.001

    Article  CAS  Google Scholar 

  47. Michard P, Guibal E, Vincent T, Le Cloirec P (1996) Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Mater 5(5):309–324. doi:10.1016/0927-6513(95)00067-4

    Article  CAS  Google Scholar 

  48. Štamberg K, Venkatesan KA, Vasudeva Rao PR (2003) Surface complexation modeling of uranyl ion sorption on mesoporous silica. Colloids Surf A 221(1–3):149–162. doi:10.1016/S0927-7757(03)00139-0

    Article  Google Scholar 

  49. Haas JR, Dichristina TJ, Wade JR (2001) Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chem Geol 180:33–54

    Article  CAS  Google Scholar 

  50. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96(11):1241–1248. doi:10.1016/j.biortech.2004.10.016

    Article  CAS  Google Scholar 

  51. Genc Ö, Yalcnkaya Y, Büyüktuncel E, Denizli A, Arca MY, Bektas S (2003) Uranium recovery by immobilized and dried powdered biomass: characterization and comparison. Int J Miner Process 68:93–107

    Article  CAS  Google Scholar 

  52. Sheng G, Li Y, Dong H, Shao D (2012) Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes. J Radioanal Nucl Chem 293(3):797–806. doi:10.1007/s10967-012-1735-9

    Article  CAS  Google Scholar 

  53. Guibal E, Roulph C, Le Cloirec P (1992) Uraniumbiosorption by a filamentous fungus mucor miehei: pH effect on mechanisms and performances of uptake. Water Res 26(8):1139–1145

    Article  CAS  Google Scholar 

  54. Guibal E, Saucedo I, Roussy J, Le Cloirec P (1994) Uptake of uranyl ions by new sorbing polymers: discussion of adsorption isotherms and pH effect. React Polym 23(2–3):147–156. doi:10.1016/0923-1137(94)90015-9

    Article  CAS  Google Scholar 

  55. Kütahyali C, Eral M (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40:109–114

    Article  Google Scholar 

  56. Piron E, Domard A (1997) Interaction between chitosan and uranyl ions. Part 1. Role of physicochemical parameters. Int J Biol Macromol 21(4):327–335

    Article  CAS  Google Scholar 

  57. Namasivayam C, Ranganathan K (1995) Removal of Cd(II) from wastewater by adsorption on waste Fe(III)/Cr(III) hydroxide. Water Res 29(7):1737–1744

    Article  CAS  Google Scholar 

  58. Galiatsatou P, Metaxas M, Kasselouri-Rigopoulou V (2002) Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J Hazard Mater 91(1–3):187–203

    Article  CAS  Google Scholar 

  59. Hongxia Z, Yongxin X, Zuyi T (2005) Sorption of uranyl ions on gibbsite: effects of contact time, pH, ionic strength, concentration and anion of electrolyte. Colloids Surf A 252(1):1–5. doi:10.1016/j.colsurfa.2004.10.005

    Article  Google Scholar 

  60. Liger E, Charlet L, van Cappellen P (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63(19/20):2939–2955

    Article  CAS  Google Scholar 

  61. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) Thorium removal by different adsorbents. J Hazard Mater 97(1–3):71–82

    Article  CAS  Google Scholar 

  62. Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33(15):3357–3363

    Article  CAS  Google Scholar 

  63. Kütahyalı C, Eral M (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40(2):109–114. doi:10.1016/j.seppur.2004.01.011

    Article  Google Scholar 

  64. Gad HMH (2003) Utilization of some agricultural wastes in treating water pollutants. Mnsoura University

  65. Tran HH, Roddick FA, O’Donnell JA (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. adsorption and kinetics. Water Res 33(13):2992–3000. doi:10.1016/S0043-1354(99)00017-2

    Article  CAS  Google Scholar 

  66. Zakutevskii OI, Psareva TS, Strelko VV, Kartel’ NT (2007) Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry 49(1):67–71. doi:10.1134/s1066362207010110

    Article  CAS  Google Scholar 

  67. Piron E, Domard A (1998) Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction. Int J Biol Macromol 22(1):33–40. doi:10.1016/S0141-8130(97)00083-4

    Article  CAS  Google Scholar 

  68. Akhila Maheswari M, Subramanian MS (2005) Extraction chromatographic method for the separation of actinides and lanthanides using EDHBA grafted AXAD-16 polymer. Talanta 65(3):735–742. doi:10.1016/j.talanta.2004.07.044

    Article  CAS  Google Scholar 

  69. Demirel N, Merdivan M, Pirinccioglu N, Hamamci C (2003) Thorium(IV) and uranium(VI) sorption studies on octacarboxymethyl-C-methylcalix [4] resorcinarene impregnated on a polymeric support. Anal Chim Acta 485(2):213–219. doi:10.1016/S0003-2670(03)00415-X

    Article  CAS  Google Scholar 

  70. Prabhakaran D, Subramanian MS (2003) Selective extraction and sequential separation of actinide and transition ions using AXAD-16-BTBED polymeric sorbent. React Funct Polym 57(2–3):147–155. doi:10.1016/j.reactfunctpolym.2003.09.003

    Article  CAS  Google Scholar 

  71. Prabhakaran D, Subramanian MS (2004) Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin. Anal Bioanal Chem 379(3):519–525. doi:10.1007/s00216-004-2600-7

    Article  CAS  Google Scholar 

  72. Vasudeva Rao PR, Patil SK (1978) A spectrophotometric method for the determination of neptunium and plutonium in process solutions. J Radioanal Chem 42(2):399–410. doi:10.1007/bf02519416

    Article  Google Scholar 

  73. Zhang X, Luo S, Yang Q, Zhang H, Li J (1997) Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. J Appl Phycol 9(1):65–71. doi:10.1023/a:1007911119029

    Article  CAS  Google Scholar 

  74. Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23(3):583–604. doi:10.1002/bit.260230309

    Article  CAS  Google Scholar 

  75. Tsezos M (1983) The role of chitin in uranium adsorption by R. arrhizus. Biotechnol Bioeng 25(8):2025–2040. doi:10.1002/bit.260250812

    Article  CAS  Google Scholar 

  76. Badawy SM, Sokker HH, Othman SH, Hashem A (2005) Cloth filter for recovery of uranium from radioactive waste. Radiat Phys Chem 73(2):125–130. doi:10.1016/j.radphyschem.2004.08.003

    Article  CAS  Google Scholar 

  77. Sheng G, Dong H, Li Y (2012) Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J Environ Radioact 113:108–115. doi:10.1016/j.jenvrad.2012.05.011

    Article  CAS  Google Scholar 

  78. Sheng G, Shen R, Dong H, Li Y (2013) Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation. Environ Sci Pollut Res Int 20(6):3708–3717. doi:10.1007/s11356-012-1278-1

    Article  CAS  Google Scholar 

  79. Meinrath G, Kato Y, Kimura T, Yoshida Z (1996) Solid–aqueous phase equilibria of uranium(VI) under ambient conditions. Radiochim Acta 75:159–167

    CAS  Google Scholar 

  80. Morrison SJ, Metzler DR, Dwyer BP (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contam Hydrol 56(1–2):99–116. doi:10.1016/S0169-7722(01)00205-4

    Article  CAS  Google Scholar 

  81. Stewart DI, Barton CS, Kee TP (2003) Metal-sequestering ligand based media for treating contaminated ground water using porous sequestration barrier. University of Leeds Report No. EVK1-CT-1999-00035, Sequestration barriers

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-VPP-184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Yakout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakout, S.M. Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater. J Radioanal Nucl Chem 308, 555–565 (2016). https://doi.org/10.1007/s10967-015-4408-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4408-7

Keywords

Navigation