Skip to main content
Log in

Study on adsorption characteristics of uranyl ions from aqueous solutions using zirconium hydroxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The removal of uranyl ions from aqueous solutions using Zr(OH)4·3.35H2O (ZH) as adsorbent was investigated using a batch adsorption technique. The maximum removal rate was found as 451.7 mg UO2 2+·g−1 ZH. The adsorption capacity and adsorption rate of the calcinated products gradually decreases with increasing calcination temperature. The hydroxyl groups in the zirconium hydroxide play an important role for the adsorption uranyl ions, which agree well with the thermogravimetric analysis of zirconium hydroxide for completely dehydration at 700 °C. The observed data shows that the adsorption process is dependent on surface complexation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Preetha CR, Gladis JM, Rao TP (2006) Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles. Environ Sci Technol 40:3070–3074

    Article  CAS  Google Scholar 

  2. Yakout SM, Rizk MA (2015) Adsorption of uranium by low-cost adsorbent derived from agricultural wastes in multi-component system. Desalin Water Treat 53:1917–1922

    Article  CAS  Google Scholar 

  3. Majdan M, Pikus S, Gajowiak A, Sternik D, Zięba E (2010) Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. J Hazard Mater 184:662–670

    Article  CAS  Google Scholar 

  4. Jin JY, Huang X, Zhou LM, Peng J, Wang Y (2015) In situ preparation of magnetic chitosan resins functionalized with triethylene-tetramine for the adsorption of uranyl(II) ions. J Radioanal Nucl Chem 303:797–806

    Article  CAS  Google Scholar 

  5. Kanematsu M, Perdrial N, Um W, Chorover J, O’Day PA (2014) Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters. Environ Sci Technol 48:6097–6106

    Article  CAS  Google Scholar 

  6. Fan FL, Bai J, Fan FY, Yin XJ, Wang Y, Tian W, Wu XL, Qin Z (2014) Solvent extraction of uranium from aqueous solutions by α-benzoinoxime. J Radioanal Nucl Chem 300:1039–1043

    Article  CAS  Google Scholar 

  7. Beltrami D, Cote G, Mokhtari H, Courtaud B, Moyer BA, Chagnes A (2014) Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem Rev 114:12002–12023

    Article  CAS  Google Scholar 

  8. Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange—column experiments. Miner Eng 18:1337–1340

    Article  CAS  Google Scholar 

  9. Banerjee C, Dudwadkar N, Tripathi SC, Gandhi PM, Grover V, Kaushik CP, Tyagi AK (2014) Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J Hazard Mater 280:63–70

    Article  CAS  Google Scholar 

  10. Al-Hobaib AS, Al-Suhybani AA (2014) Removal of uranyl ions from aqueous solutions using barium titanate. J Radioanal Nucl Chem 299:559–567

    Article  CAS  Google Scholar 

  11. Zou WH, Bai HJ, Zhao L, Li K, Han RP (2011) Characterization and properties of zeolite as adsorbent for removal of uranium(VI) from solution in fixed bed column. J Radioanal Nucl Chem 288:779–788

    Article  CAS  Google Scholar 

  12. Abdi MR, Shakur HR, Saraee KRE, Sadeghi M (2014) Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: effects of nano concentration and cation exchange. J Radioanal Nucl Chem 300:1217–1225

    Article  CAS  Google Scholar 

  13. Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101:267–276

    Article  CAS  Google Scholar 

  14. Bagherifam S, Lakzian A, Ahmadi SJ, Rahimi MF, Halajnia A (2010) Uranium removal from aqueous solutions by wood powder and wheat straw. J Radioanal Nucl Chem 283:289–296

    Article  CAS  Google Scholar 

  15. Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  Google Scholar 

  16. Wang JS, Peng RT, Yang JH, Liu YC, Hu XJ (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohyd Polym 84:1169–1175

    Article  CAS  Google Scholar 

  17. Zareh MM, Aldaher A, Hussein AEM, Mahfouz MG, Soliman M (2013) Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J Radioanal Nucl Chem 295:1153–1159

    Article  CAS  Google Scholar 

  18. Zhou LM, Wang YP, Liu ZR, Huang QW (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002

    Article  CAS  Google Scholar 

  19. Wang Y, Gu ZX, Yang JJ, Liao JL, Yang YY, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20

    Article  CAS  Google Scholar 

  20. Singh BN, Maiti B (2006) Seperation and preconcentration of U(VI) on XAD-4 modified with 8-hydroxy quinoline. Talanta 69:393–396

    Article  CAS  Google Scholar 

  21. Kim JH, Lee HI, Yeon JW, Jung Y, Kim JM (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286:129–133

    Article  CAS  Google Scholar 

  22. Özeroğlu C, Keçeli G (2009) Kinetic and thermodynamic studies on the adsorption of U(VI) ions on densely crosslinked poly(methacrylic acid)from aqueous solutions. Radiochim Acta 97:709–717

    Google Scholar 

  23. Nogami M, Sugiyama Y, Kawasaki T, Harada M, Morita Y, Kikuchi T, Ikeda Y (2010) Adsorptivity of polyvinylpolypyrrolidone for selective separation of U(VI) from nitric acid media. J Radioanal Nucl Chem 283:541–546

    Article  CAS  Google Scholar 

  24. Özeroğlu C, Metin N (2012) Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. J Radioanal Nucl Chem 292:923–935

    Article  Google Scholar 

  25. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide. J Colloid Interface Sci 297:426–433

    Article  CAS  Google Scholar 

  26. Rodrigues LA, Maschio LJ, da Silva RE, da Silva MLCP (2010) Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. J Hazard Mater 173:630–636

    Article  CAS  Google Scholar 

  27. Seredych M, Bandosz TJ (2011) Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chem Eng J 166:1032–1038

    Article  CAS  Google Scholar 

  28. Dou XM, Mohan D, Pittman CU, Yang S (2012) Remediating fluoride from water using hydrous zirconium oxide. Chem Eng J 198–199:236–245

    Article  Google Scholar 

  29. Peterson GW, Karwacki CJ, Feaver WB, Rossin JA (2009) Zirconium hydroxide as a reactive substrate for the removal of sulfur dioxide. Ind Eng Chem Res 48:1694–1698

    Article  CAS  Google Scholar 

  30. Glover TG, Peterson GW, DeCoste JB, Browe MA (2012) Adsorption of ammonia by sulfuric acid treated zirconium hydroxide. Langmuir 28:10478–10487

    Article  CAS  Google Scholar 

  31. Gao YY, Yuan YL, Ma DD, Li L, Li YH, Xu WH, Tao W (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453:82–90

    Article  CAS  Google Scholar 

  32. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res 37:4038–4044

    Article  CAS  Google Scholar 

  33. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  34. Mogilevsky G, Karwacki CJ, Peterson GW, Wagner GW (2011) Surface hydroxyl concentration on Zr(OH)4 quantified by 1H MAS NMR. Chem Phys Lett 511:384–388

    Article  CAS  Google Scholar 

  35. Southon PD, Bartlett JR, Woolfrey JL, Ben-Nissan B (2002) Formation and characterization of an aqueous zirconium hydroxide colloid. Chem Mater 14:4313–4319

    Article  CAS  Google Scholar 

  36. Elabd AA, Zidan WI, Abo-Aly MM, Bakier E, Attia MS (2014) Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR120. J Environ Radioact 134:99–108

    Article  CAS  Google Scholar 

  37. Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Ac 140:621–643

    Article  CAS  Google Scholar 

  38. Sprynskyy M, Kovalchuk I, Buszewski B (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J Hazard Mater 181:700–707

    Article  CAS  Google Scholar 

  39. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  CAS  Google Scholar 

  40. Abbasizadeh S, Keshtkar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20:1656–1664

    Article  CAS  Google Scholar 

  41. Qian LP, Ma MH, Cheng DH (2015) Adsorption and desorption of uranium on nano goethite and nano alumina. J Radioanal Nucl Chem 303:161–170

    Article  CAS  Google Scholar 

  42. Hu R, Shao DD, Wang XK (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym Chem 5:6207–6215

    Article  CAS  Google Scholar 

  43. Zhao YG, Li JX, Zhao LP, Zhang SW, Huang YS, Wu XL, Wang XK (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  44. Song WC, Shao DD, Lu SS, Wang XK (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299

    Article  CAS  Google Scholar 

  45. Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    Article  CAS  Google Scholar 

  46. Wang XX, Zhang SW, Li JX, Xu JZ, Wang XK (2014) Fabrication of Fe/Fe3C@porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(VI) from solution. Inorg Chem Front 1:641–648

    Article  CAS  Google Scholar 

  47. Shao DD, Li JX, Wang XK (2014) Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci China Chem 57:1449–1458

    Article  CAS  Google Scholar 

  48. Ortaboy S, Atun G (2014) Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution. Ann Nucl Energy 73:345–354

    Article  CAS  Google Scholar 

  49. Ding DX, Fu PK, Li L, Xin X, Hu N, Li GY (2014) U(VI) ion adsorption thermodynamics and kinetics from aqueous solution onto raw sodium feldspar and acid-activated sodium feldspar. J Radioanal Nucl Chem 299:1903–1909

    Article  CAS  Google Scholar 

  50. Liu MX, Dong FQ, Yan XY, Zeng WM, Hou LY, Pang XF (2010) Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresour Technol 101:8573–8580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Scientific Research Project (No. L2012134) of Educational Department of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, R., Jiang, H. et al. Study on adsorption characteristics of uranyl ions from aqueous solutions using zirconium hydroxide. J Radioanal Nucl Chem 308, 213–220 (2016). https://doi.org/10.1007/s10967-015-4315-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4315-y

Keywords

Navigation