Skip to main content
Log in

Radiolytic formation of highly luminescent triangular Ag nanocolloids

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, luminescent triangular silver nanoparticles were synthesized by radiolytic reduction method. The results showed that by variation of irradiation dose, morphology of silver nanoparticles can be converted from spherical to triangular. These shape variations mainly arise from competition between adsorption rate of polymer chains on (111) facets and reduction rate of the Ag+ ions along (110) facets during increasing dose. Furthermore, the dramatically enhanced photoluminescence spectra were observed from triangular Ag nanoparticles. This unusual behavior can be explained by excitation of dipolar and quadrupolar resonance in triangular nanoparticles which increase the electric fields at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sreekumaran Nair A, Suryanarayanan V, Pradeep T, Thomas J, Anija M et al (2005) AuxAgy@ ZrO2 core–shell nanoparticles: synthesis, characterization, reactivity and optical limiting. Mat Sci Eng B 117:173–182

    Article  Google Scholar 

  2. Smitha S, Nissamudeen K, Philip D, Gopchandran K (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 71:186–190

    Article  CAS  Google Scholar 

  3. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  4. He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786

    Article  CAS  Google Scholar 

  5. Ma W, Yang H, Wang W, Gao P, Yao J (2011) Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance. Sensors 11:8643–8653

    Article  CAS  Google Scholar 

  6. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y et al (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036

    Article  CAS  Google Scholar 

  7. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399

    Article  CAS  Google Scholar 

  8. Mafuné F, J-y Kohno, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Article  Google Scholar 

  9. Pastoriza-Santos I, Liz-Marzán LM (1999) Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15:948–951

    Article  CAS  Google Scholar 

  10. Krklješ A (2011) Radiolytic synthesis of nanocomposites based on noble metal nanoparticles and natural polymer, and their application as biomaterial. Radiation curing of composites for enhancing the features and utility in health care and industry 128. Cairo, Egypt

  11. Temgire M, Bellare J, Joshi S (2011) Gamma radiolytic formation of alloyed Ag–Pt nanocolloids. Adv Phys Chem. doi:10.1155/2011/249097

    Google Scholar 

  12. Kharisov BI, Kharissova OV, Méndez UO (2013) Radiation synthesis of materials and compounds. CRC, Boca Raton

    Book  Google Scholar 

  13. Henglein A (1995) Electronics of colloidal nanometer particles. Berichte der Bunsengesellschaft für physikalische Chemie 99:903–913

    Article  CAS  Google Scholar 

  14. Saion E, Gharibshahi E, Naghavi K (2013) Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. Int J Mol Sci 14:7880–7896

    Article  Google Scholar 

  15. Abedini A, Larki F, Saion E, Zakaria A, Zobir Hussein M (2012) Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters. Radiat Phys Chem 81:1653–1658

    Article  CAS  Google Scholar 

  16. Somasundaran P (2006) Encyclopedia of surface and colloid science. CRC, Boca Raton

    Google Scholar 

  17. Abedini A, Larki F, Saion EB, Zakaria A, Hussein MZ (2012) Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system. J Radioanal Nucl Chem 292:361–366

    Article  CAS  Google Scholar 

  18. Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8:1–10

    Article  Google Scholar 

  19. Liu C, Yang X, Yuan H, Zhou Z, Xiao D (2007) Preparation of silver nanoparticle and its application to the determination of ct-DNA. Sensors 7:708–718

    Article  CAS  Google Scholar 

  20. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  21. Kaur P, Chudasama B (2014) Single step synthesis of pluronic stabilized IR responsive gold nanoplates. RSC Adv 4:36006–36011

    Article  CAS  Google Scholar 

  22. Ghosh T, Satpati B, Senapati D (2014) Characterization of bimetallic core–shell nanorings synthesized via ascorbic acid-controlled galvanic displacement followed by epitaxial growth. J Mater Chem C 2:2439–2447

    Article  CAS  Google Scholar 

  23. Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320

    Article  CAS  Google Scholar 

  24. Zhao J (2008) Resonant localized surface plasmon resonance spectroscopy: fundamentals and applications. ProQuest, Ann Arbor

    Google Scholar 

  25. Kvítek O, Siegel J, Hnatowicz V, Švorčík V (2013) Noble metal nanostructures influence of structure and environment on their optical properties. J Nanomater 2013:111

    Article  Google Scholar 

  26. He X, Zhao X, Chen Y, Feng J (2008) The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB. Mater Charact 59:380–384

    Article  CAS  Google Scholar 

  27. Xue C (2007) Metal nanoprisms: synthesis, optical properties, and assembly. ProQuest, Ann Arbor

    Google Scholar 

  28. Jiang X, Chen C, Chen W, Yu A (2009) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26:4400–4408

    Article  Google Scholar 

  29. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Losytskyy MY, Kotko AV et al (2009) Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys Rev B 79:235438

    Article  Google Scholar 

  30. Mertens H, Polman A (2009) Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes. J Appl Phys 105:044302

    Article  Google Scholar 

  31. Lin C-AJ, Lee C-H, Hsieh J-T, Wang H-H, Li JK et al (2009) Review: synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng 29:276–283

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Higher Institution’s Centre of Excellence (HiCOE) Grant funded under AKU95-HiCOE Grant. The authors would like to thank to the Centre of Research and Instrumentation Management (CRIM) of Universiti Kebangsaan Malaysia for provision of laboratory facilities. The first author would like to thank Dr. Farhad Larki, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, for invaluable discussions and advices which were helpful in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alam Abedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, A., Susthitha Menon, P., Daud, A.R. et al. Radiolytic formation of highly luminescent triangular Ag nanocolloids. J Radioanal Nucl Chem 307, 985–991 (2016). https://doi.org/10.1007/s10967-015-4223-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4223-1

Keywords

Navigation