Skip to main content
Log in

Primary evaluation of a nickel-chlorophyll derivative as a multimodality agent for tumor imaging and photodynamic therapy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the biological potential of a nickel chlorophyll derivative (Ni-PH-A) as a multimodal agent for tumor imaging and photodynamic therapy (PDT) was investigated. Optimum conditions of labeling with 131I were investigated and determined as pH 10 and 1 mg amount of iodogen. Biodistribution results of 131I labeled Ni-PH-A in female rats indicated that radiolabeled Ni-PH-A maximum uptake in the liver, spleen and ovary was observed at 30 min. Intercellular uptake and PDT efficacy of Ni-PH-A were better in MDAH-2774 (human ovarian endometrioid adenocarcinoma) than in MCF-7 (human breast adenocarcinoma) cells. Ni-PH-A might be a promising multimodal agent for lung, ovary and liver tumor imaging and PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Detty MR, Gibson SL, Wagner S (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Nucl Med Chem 47(16):3897–3915

    Article  CAS  Google Scholar 

  2. Wilson BC (1998) Light sources for photodynamic therapy. Photodyn Ther News 1:6–8

    Google Scholar 

  3. Calin MA, Parascaa SV (2006) Photodynamic therapy in oncology. J Optoelectron Adv M 8:1173–1179

    Google Scholar 

  4. Cai W, Chen K, Mohamedali K (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47(12):2048–2056

    CAS  Google Scholar 

  5. Chan JK, Monk BJ, Cuccia D, Pham H, Kimel S, Gu M, Hammer-Wilson MJ, Liaw LHL, Osann K, DiSaia PJ (2002) Laparoscopic photodynamic diagnosis of ovarian cancer using 5-aminolevulinic acid in a rat model. Gynecol Oncol 87:64–70

    Article  CAS  Google Scholar 

  6. Ludicke F, Gabrecht T, Lange N, Wagnieres G, Van Den Bergh H, Berclaz L, Major AL (2003) Photodynamic diagnosis of ovarian cancer using hexaminolaevulinate: a preclinical study. Br J Cancer 88:1780–1784

    Article  CAS  Google Scholar 

  7. Loning M, Diddens H, Kupker W, Diedrich K, Huttmann G (2004) Laparoscopic fluorescence detection of ovarian carcinoma metastases using 5-aminolevulinic acid-induced protoporphyrin IX. Cancer 100:1650–1656

    Article  Google Scholar 

  8. Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, Hasan T (2009) In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br J Cancer 101:2015–2022

    Article  CAS  Google Scholar 

  9. Whitacre CM, Feyes DK, Satoh T, Grossmann J, Mulvihill JW, Mukhtar H, Oleinick NL (2000) Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 of SW480 human colon cancer xenografts in athymic mice. Clin Cancer Res 6(5):2021–2027

    CAS  Google Scholar 

  10. Shishkova N, Kuznetsova O, Berezov T (2013) Photodynamic therapy in gastroenterology. J Gastrointest Cancer 44(3):251–259

    Article  CAS  Google Scholar 

  11. Choi B-H, Ryoo I-G, Kang HC, Kwak M-K (2014) The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by NRF2 silencing. PLoS One 9(9):e107158

    Article  Google Scholar 

  12. Wang L-W, Huang Z, Lin H, Li Z-S, Hetzel F, Liu B (2013) Effect of photofrin-mediated photo cytotoxicity on a panel of human pancreatic cancer cells. Photodiagn Photodyn Ther 10:244–251

    Article  CAS  Google Scholar 

  13. Moeno S, Krause RW, Ermilov EA, Kuzyniak W, Höpfner M (2014) Synthesis and characterization of novel zincphthalocyanines as potential photosensitizersfor photodynamic therapy of cancers. Photochem Photobiol 13:963–970

    Article  CAS  Google Scholar 

  14. Zhou M, Ni Q-W, Yang S-Y, Qu C-Y, Zhao P-C, Zhang J-C, Xu L-M (2013) Effects of integrin-targeted photodynamic therapy on pancreatic carcinoma cell. World J Gastroenterol 19(39):6559–6567

    Article  Google Scholar 

  15. Smith KM, Goff DA, Simpson DJ (1985) The meso substitution of chlorophyll derivatives: direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides. J Am Chem Soc 107(17):4946–4954

    Article  CAS  Google Scholar 

  16. Pandit A, Ocakoglu K, Buda F, van Marle T, Holzwarth AR, de Groot HJM (2013) J Phys Chem B 117(38):11292–11298

    Article  CAS  Google Scholar 

  17. Ocakoglu K, Er Ö, Lambrecht FY, Yılmaz Süslüer S, Kayabasi C, Gündüz C, Yılmaz O (2015) Evaluation of cancer imaging potential and photodynamic therapy efficacy of copper (II) benzyloxypheophorbide-a. J Drug Target 23(1):89–95

    Article  CAS  Google Scholar 

  18. Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK (2005) Multimodality agents for tumor imaging (PET, Fluorescence) and photodynamic therapy. A possible, “see and treat” approach. J Nucl Med Chem 48:6286–6295

    Article  CAS  Google Scholar 

  19. Yurt Lambrecht F, Durkan K, Yıldırım Y, Acar Ç (2006) Labeling of acetaminophen with I-131 and biodistribution in rats. Chem Pharm Bull 54(2):245–247

    Article  Google Scholar 

  20. Bayrak E, Yurt Lambrecht F, Durkan K, Yilmaz O (2010) In vitro evaluation, biodistribution in rats of radiolabeled raloxifene. Appl Radiat Isot 68:33–36

    Article  CAS  Google Scholar 

  21. Ozgur A, Yurt Lambrecht F, Ocakoglu K, GunduzC Yucebas M (2012) Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent. Int J Pharm 422:472–478

    Article  CAS  Google Scholar 

  22. Ashrafi SA, Hosseinimehr SJ, Varmira K, Abedi SM (2012) Radioimmunotherapy with 131I-Bevacizumab as a specific molecule for cells with overexpression of the vascular endothelial growth factor. Biother Radiopharm 27(7):420–425

    CAS  Google Scholar 

  23. Chen K, Preuß A, Hackbarth S, Wacker M, Langer K, Röder B (2009) Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. Photochem Photobiol B 96:66–74

    Article  CAS  Google Scholar 

  24. Ocakoglu K, Bayrak E, Onursal M, Yilmaz O, Lambrecht FY, Holzwarth AR (2011) Evaluation of 99mTc-pheophorbide-a use in infection imaging: a rat model. Appl Radiat Isot 69:1165–1168

    Article  CAS  Google Scholar 

  25. Babar AK, Singh AK, Goel HC, Chauhan UPS, Sharma RK (2000) Evaluation of 99mTc-labeled photosan-3, a hematoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy. Nucl Med Biol 27:419–426

    Article  Google Scholar 

  26. Yang SG, Chang JE, Shin B, Park S, Na K, Shim CK (2010) 99mTc-hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging. J Mater Chem 20:9042–9046

    Article  CAS  Google Scholar 

  27. Yilmaz O, Yurt Lambrecht F, Gokmen N, Erbayraktar S, Durkan K (2007) Distribution of 131I-labeled recombinant human erythropoietin in maternal and fetal organs following intravenous administration in pregnant rats. J Radioanal Nucl Chem 273(2):311–313

    Article  CAS  Google Scholar 

  28. Ocakoglu K, Yildirim Y, Yurt Lambrecht F, Ocal J, Icli S (2008) Biological investigation of 131I-labeled new water soluble Ru(II) polypyridyl complex. J Appl Radiat Isot 66:115–121

    Article  CAS  Google Scholar 

  29. Seyitoglu B, Yurt Lambrecht F, Durkan K (2009) Labeling of Apigenin with 131I and bioactivity of 131I-apigenin in male and female rats. J Radioanal Nucl Chem 279(3):867–873

    Article  CAS  Google Scholar 

  30. Pandey SK, Sajjad M, Chen Y, Pandey A, Missert JR, Batt C, Yao R, Nabi HA, Oseroff AR, Pandey RK (2009) Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced pdt efficacy and tumor imaging (124I-PET) ability. Bioconjug Chem 20:274–282

    Article  CAS  Google Scholar 

  31. Josefhen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs. doi:10.1155/2008/276109 Hindawi Publishing Corporation, article, ID 276109S

    Google Scholar 

  32. Carcenac M, Larroque C, Langlois R, van Lier JE, Artus J-C, Pelegrin A (1999) Preparation, phototoxicity and biodistribution studies of anti-carcinoembryonic antigen monoclonal anti body-phthalocyanine conjugates. Photochem Photobiol 70(6):930–936

    CAS  Google Scholar 

  33. Liu ZT, Xiong L, Liu Z-P, Miao X-Y, Lin L-W, Wen Y (2014) In vivo and in vitro evaluation of the cytotoxic effects of Photosan-loaded hollow silica nanoparticles on liver cancer. Nanoscale Res Lett 9:319

    Article  CAS  Google Scholar 

  34. Murugesen S, Shetty SJ, Srivastava TS, Samuel AM, Noronha OP (2002) Preparation and biological evaluation of the new chlorin photosensitizer T3, 4BCPC for detection and treatment of tumors. J Photochem Photobiol, B 68(1):33–38

    Article  Google Scholar 

  35. Aprahamian M, Evrard S, Keller P, Tusuji M, Balboni G, Damgè C, Marescaux J (1993) Distribution of pheophorbide A in normal tissues and in an experimental pancreatic cancer in rats. Anticancer Drug Des 8(2):101–114

    CAS  Google Scholar 

  36. Usuda J, Kato H, Okunaka T, Furukawa K, Tsutsui H, Yamada K, Suga Y, Honda H, Nagatsuka Y, Ohira T, Tsuboi M, Hirano T (2006) Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol 1(5):489–493

    Article  Google Scholar 

  37. Manoto SL, Houreld NN, Abrahamse H (2013) Phototoxic effect of photodynamic therapy on lung cancer cells grown as a monolayer and three dimensional multicellular spheroids. Lasers Surg Med 45(3):186–194

    Article  Google Scholar 

  38. Shao J, Dai Y, Zhao W, Xie J, Xue J, Ye J, Jia L (2013) Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells. Cancer Lett 330(1):49–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by The Scientific and Technological Research Council of Turkey, TUBITAK (Grant No.: 112T565) and Department of Scientific Projects at Ege University, Izmir, Turkey (12 NBE008).

Conflict of interest

The authors declared no declaration of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Yurt Lambrecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, O., Lambrecht, F.Y., Ocakoglu, K. et al. Primary evaluation of a nickel-chlorophyll derivative as a multimodality agent for tumor imaging and photodynamic therapy. J Radioanal Nucl Chem 306, 155–163 (2015). https://doi.org/10.1007/s10967-015-4081-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4081-x

Keywords

Navigation