Skip to main content
Log in

On-line experiments on rapid detection of radionuclides based on sequential Bayesian analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A rapid detection method based on sequential Bayesian analysis provides a new perspective on national security in preventing the smuggling and illegal transportation of nuclear materials. In this paper, a sequential Bayesian analysis system, which mainly consists of a LaBr3(Ce) scintillator detector, a pulse analyzer based on a field-programmable gate array technique, and a sequential Bayesian analysis processor, is developed to directly validate the feasibility of sequential Bayesian analysis. The detection ability of 60Co, 137Cs, 133Ba, and 152Eu for a specific radioactivity is studied and quantified using the maximum detection distance and the equivalent minimum detection activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Candy JV (2010) Detection, classification, and estimation of radioactive contraband from uncertain low-count measurements. LLNL Report: LLNL-TR-438632

  2. Chambers DH (2008) Signal-processing model for radiation transport. IEEE Trans Nucl Sci 1:149–150

    Google Scholar 

  3. Candy JV, Breitfeiler EF, Guidry BL, Manatt D, Sale KE, Chambers DH, Axelrod MA, Meyer AM (2009) Radioactive Contraband Detection: A Bayesian Approach, Proceedings of MTS-IEEE Oceans 2009 Conference

  4. Candy JV (2012) Sequential bayesian detection: a model-based approach, classical, semi-classical and quantum noise. Springer, Berlin, pp 9–18

    Book  Google Scholar 

  5. Candy JV, Breitfeiler EF, Guidry BL, Manatt D, Sale KE, Chambers DH, Axelrod MA, Meyer AM (2009) Physics-based detection of radioactive contraband: a sequential Bayesian approach. IEEE Trans Nucl Sci 56(6):3694–3711

    Article  CAS  Google Scholar 

  6. Candy JV, Chambers DH, Breitfeiler EF, Guidry BL, Verbeke JM, Axelrod MA, Sale KE, Meyer AM (2010) Model-based detection of radioactive contraband for harbor defense incorporating Compton scattering physics. Proceedings of Oceans 2010 IEEE Conference

  7. Kumar GA, Mazumdar DA, Gothe DA (2009) Efficiency calibration and simulation of a LaBr 3(Ce) detector in close-geometry. Nucl Instrum Method Phys Res A 609(2–3):183–186

    Article  CAS  Google Scholar 

  8. Xiang QP, Tian DF, Zhu JY, Hao FH, Ding G, Zeng J (2013) Numerical study on the sequential Bayesian approach for radioactive material detection. Nucl Instrum Method Phys Res A 697:107–113

    Article  CAS  Google Scholar 

  9. Xiang QP, Tian DF, Hao FH, Ding G, Zeng J, Luo F (2013) Off-line experiments on radionuclide detection based on the sequential Bayesian approach. Nucl Instrum Method Phys Res A 729:212–219

    Article  CAS  Google Scholar 

  10. Wald A (1945) Sequential tests of statistical hypothesis. Ann Math Stat 16:117–186

    Article  Google Scholar 

  11. Xiang QP, Hao FH, Lei JR, Chen HD, Chu CS, Cao L (2012) Research on performance of lanthanum bromide(Ce) scintillator detector. J Appl Nucl Sci & Technol 5(2):131–136

    Google Scholar 

  12. Xiang QP, Tian DF, Hao FH, Chu CS, Ding G, Zeng J, Luo F (2014) Self-calibration method for cerium-doped lanthanum bromide scintillator detector in the 0.1–2.0 MeV energy range. J Radioanal Nucl Chem 299:1439–1445

    Article  CAS  Google Scholar 

  13. Herman M (1986) National Nuclear Data Center. http://www.nndc.bnl.gov

  14. Iltis A, Mayhugh MR, Menge P, Rozsa CM, Selles O, Solovyev V (2006) Lanthanum halide scintillators: properties and applications. Nucl Instrum Method Phys Res A 563:359–363

    Article  CAS  Google Scholar 

  15. Milbrath BD, Choate BJ, Fast JE, Hensley WK, Kouzes RT, Schweppe JE (2007) Comparison of LaBr 3: Ce and NaI: Tl scintillators for radioisotope identification devices. Nucl Instrum Method Phys Res A 572(2):774–784

    Article  CAS  Google Scholar 

  16. Alzimami K, Abuelhia E, Podolyak Z, Ioannou A, Spyrou NM (2008) Characterization of LaBr 3: Ce and LaCl3: Ce scintillators for gamma-ray spectroscopy. J Radioanal Nucl Chem 278(3):755–759

    Article  CAS  Google Scholar 

  17. Sullivan JP, Rawool-Sullivan MW, Wenz TR (2008) LaCl3(Ce) and LaBr 3(Ce) gamma-ray spectra with various plutonium isotopic and uranium enrichment standards. J Radioanal Nucl Chem 276(3):699–705

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Very sincere thanks are due to Mr. Dai Fei, Dr. Zhou Rong, and Prof. Yang Chaowen from Sichuan University. This Project was supported by the Foundation for Development of Science and Technology of China Academy of Engineering Physics (Grant No. 2013B0103005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingpei Xiang.

Appendices

Appendix energy distribution and estimator

The full-peak energy of the jth monoenergetic source of the mth radionuclide under the observations X m,j (n−1) is typically a Gaussian distribution as following

$$ f_{1} (\varepsilon_{m,j} (n)|X_{m,j} (n - 1)) = \frac{1}{{\sqrt {2\pi } \sigma_{{\epsilon_{m,j}^{t} }} }}\exp \left\{ { - \frac{{(\varepsilon_{m,j} (n) - \epsilon_{m,j}^{t} )^{2} }}{{2\sigma_{{\epsilon_{m,j}^{t} }}^{2} }}} \right\} $$
(9)
$$ f_{0} (\varepsilon_{m,j} (n)|X_{m,j} (n - 1)) = \frac{1}{{\sqrt {2\pi } \sigma_{{\epsilon_{m,j}^{ \wedge } }} (n)}}\exp \left\{ { - \frac{{(\varepsilon_{m,j} (n) - \epsilon_{m,j}^{ \wedge } (n))^{2} }}{{2\sigma_{{\epsilon_{m,j}^{ \wedge } }}^{2} (n)}}} \right\} $$
(10)

If H 1 is true, the mean and standard deviation are the true parameters denoted by superscript t, and if H 0 is true, the mean and standard deviation are estimated parameters (denoted by superscript ^) which should be sequentially innovated by evaluating the measurement up to the nth event. The energy estimator proposed [5] is base on the Gauss-Markov representation as

$$ {\text{State prediction:}}\;\epsilon_{m,j} (n) = \epsilon_{m,j} (n - 1) + \omega_{{\epsilon_{m,j} }} (n - 1) $$
$$ {\text{Measurement model:}}\;\upepsilon_{m,j} (n) = \epsilon_{m,j} (n) + \nu_{{\epsilon_{m,j} }} (n) $$

where ω ε  ~ N(0, R ωω ) is an uncorrelated zero-mean, Gaussian noise, mainly depending on the shield system uncertainty and ν ε  ~ N(0, R νν ) is the measurement (instrumentation) noise. For the Kalman filter achieves a minimum variance estimate in the linear Gauss-Markov model case so that it is utilized as the optimal estimator in energy estimation. The algorithms of the Kalman filter are

  1. (1)

    Initialize: \( \epsilon_{m,j}^{ \wedge } (0|0) =\epsilon _{m,j}^{t} ,R_{{\epsilon_{m,j}^{ \wedge } }} (0|0) = = \sigma_{{\epsilon_{m,j}^{t} }}^{2} \)

  2. (2)

    Prediction: \( \epsilon_{m,j}^{ \wedge } (n|n - 1) = \epsilon_{m,j}^{ \wedge } (n - 1|n - 1) \)

  3. (3)

    \( R_{{\epsilon_{m,j}^{ \wedge } }} (n|n - 1) = R_{{\epsilon_{m,j}^{ \wedge } }} (n - 1|n - 1) + R_{\omega \omega } (n - 1) \)

  4. (4)

    Innovation: \( e_{m,j} (n) = \varepsilon_{m,j} (n) - \epsilon_{m,j}^{ \wedge } (n|n - 1),R_{ee} (n) = R_{{\epsilon_{m,j}^{ \wedge } }} (n|n - 1) + R_{\nu \nu } (n) \)

  5. (5)

    Gain coefficient: \( K_{m,j} (n) = R_{{\epsilon_{m,j}^{ \wedge } }} (n|n - 1) \times R_{ee}^{ - 1} (t) \)

  6. (6)

    Correction: \( \epsilon_{m,j}^{ \wedge } (n|n) = \epsilon_{m,j}^{ \wedge } (n|n - 1) + K_{m,j} (n) \times e_{m,j} (n) \)

    $$ R_{{\epsilon_{m,j}^{ \wedge } }} (n|n) = [1 - K_{m,j} (n)] \times R_{{\epsilon_{m,j}^{ \wedge } }} (n|n - 1) = \sigma_{{\epsilon_{m,j}^{ \wedge } }}^{2} (n) $$

Interarrival time distribution and estimator

The interarrival time for the jth monoenergetic source of the mth radionuclide under the observations X m,j (n−1) and current event’s energy ε m,j (n) is exponentially distributed as

$$ f_{1} (\Delta \tau_{m,j} (n)|\varepsilon_{m,j} (n),X_{m,j} (n - 1)) = \lambda_{m,j}^{t} \exp ( - \lambda_{m,j}^{t} \times \Delta \tau_{m,j} (n)) $$
(11)
$$ f_{0} (\Delta \tau_{m,j} (n)|\varepsilon_{m,j} (n),X_{m,j} (n - 1)) = \lambda_{m,j}^{ \wedge } \exp ( - \lambda_{m,j}^{ \wedge } \times \Delta \tau_{m,j} (n)) $$
(12)

If H 1 is true, the mean interarrival time is theoretically calculated based on the specific model of radionuclide detection, and if H 0 is true, the mean interarrival time is also estimated by evaluating the measurement up to the nth event using particle filter rather than the Kalman filter because of the nonlinear property of the interarrival time estimation. The interarrival time estimation model is

$$ {\text{State prediction:}}\;\;\Delta \tau_{m,j} (n) = \omega_{{\Delta \tau_{m,j} }} (n) $$
$$ {\text{Measurement model:}}\;\Delta \tau_{m,j} (n) = \Delta \tau_{m,j} (n) + \nu_{{\Delta \tau_{m,j} }} (n) $$

The noise source \( \omega_{{\Delta \tau_{m,j} }} \sim f_{\omega } (\omega_{{\Delta \tau_{m,j} }} ) = \lambda_{m,j}^{t} \exp ( - \lambda_{m,j}^{t} \times \omega_{{\Delta \tau_{m,j} }} ),\lambda_{m,j}^{t} = 1/\Delta \tau_{m,j}^{t} \) and \( \nu_{{\Delta \tau_{m,j} }} \) is exponential measurement (instrumentation) noise which depends on the time measurement accuracy of experimental instruments with the probability density as \( f_{\nu } (\nu_{{\Delta \tau_{m,j} }} ) = \lambda_{\nu } \exp ( - \lambda_{\nu } \times \nu_{{\Delta \tau_{m,j} }} ) \). The corresponding conditional probability with the state prediction \( \Delta \tau_{m} (n) \) is\( f_{\nu } (\Delta \tau_{m} (n)|\Delta \tau_{m} (n)) = \lambda_{\nu } \exp [ - \lambda_{\nu } \times (\Delta \tau_{m} (n) - \Delta \tau_{m} (n))] \). In this project, the particle filter is utilized to estimate the maximum a-posterior (MAP) distribution of interarrival time. The algorithms of particle filter are

  1. (1)

    Initialize: \( \Delta \tau_{m,j}^{ \wedge } (0) = \Delta \tau_{m,j}^{t} = 1/\lambda_{m,j}^{t} \), sampling N p pairs of {particle, weight}

    $$ \Delta \tau_{m,j}^{(i)} = \omega_{{\Delta \tau_{m,j} }} (0)\sim \lambda_{m,j}^{t} \exp ( - \lambda_{m,j}^{t} \times \omega_{{\Delta \tau_{m,j} }} ),W_{m,j}^{(i)} (0) = 1/N_{p} ,\quad i = 1,2, \ldots ,N_{p} $$
  2. (2)

    Prediction: \( \Delta \tau_{m,j} (n) = \Delta \tau_{m,j}^{(i)} + \nu_{{\Delta \tau_{m,j} }} (n), \quad i = 1,2, \ldots ,N_{p} \)

  3. (3)

    \( {\text{Likelihood: }} f_{\nu } (\Delta \tau_{m,j} (n)|\Delta \tau_{m,j}^{(i)} ) = \lambda_{\nu } \exp [ - \lambda_{\nu } \times (\Delta \tau_{m,j} (n) - \Delta \tau_{m,j}^{(i)} )], \quad i = 1,2, \ldots ,N_{p} \)

  4. (4)

    Weight update: \( \begin{aligned} W_{m,j}^{(i)} (n) & = W_{m,j}^{(i)} (n - 1) \times f_{\nu } (\Delta \tau_{m,j} (n)|\Delta \tau_{m,j}^{(i)} ) \\ & =W_{m,j}^{(i)} (n - 1) \times \lambda_{v} \exp [ - \lambda_{v} \times (\Delta \tau_{m,j} (n) - \Delta \tau_{m,j}^{(i)} )], \quad i = 1,2, \ldots ,N_{p} \\ \end{aligned} \)

  5. (5)

    Weight normalization: \( {{W_{m,j}^{(i)} (n) = W_{m,j}^{(i)} (n)} \mathord{\left/ {\vphantom {{W_{m,j}^{(i)} (n) = W_{m,j}^{(i)} (n)} {\sum\nolimits_{i = 1}^{{N_{p} }} {W_{m,j}^{(i)} (n)} ,i = 1,2, \ldots ,N_{p} }}} \right. \kern-0pt} {\sum\nolimits_{i = 1}^{{N_{p} }} {W_{m,j}^{(i)} (n)} , \quad i = 1,2, \ldots ,N_{p} }} \)

  6. (6)

    MAP estimate: \( \Delta \tau_{m,j}^{ \wedge } (n) = \Delta \tau_{m,j}^{(k)} ,W_{m,j}^{(k)} (n) = \mathop {\hbox{max} }\limits_{{1 \le i \le N_{p} }} W_{m,j}^{(i)} (n) \Rightarrow \lambda_{m,j}^{ \wedge } (n) = 1/\Delta \tau_{m,j}^{ \wedge } (n) \)

Normalized detection probability estimator

According to the definition mentioned above in Eq. (5), the normalized detection probability as the function of detection efficiency, photoelectric effect probability and emission probability corresponding to all monoenergetic sources of the mth radionuclide can be described as

$$ L_{m,j}^{t} = \frac{{p_{m,j} \eta_{m,j} \alpha_{m,j} }}{{\sum\nolimits_{j = 1}^{{K_{m} }} {p_{m,j} \eta_{m,j} \alpha_{m,j} } }} $$
(13)

Meanwhile, a sequential counting technique is used to obtain the estimated normalized detection probability. The sequential counting estimator for the jth monoenergetic source of the mth radionuclide is given by

$$ L_{m,j}^{ \wedge } (n) = \frac{{M_{m,j} (n)}}{{\sum\nolimits_{j = 1}^{{K_{m} }} {M_{m,j} (n)} }} $$
(14)

where M m,j (n) is the total counts of full energy events for the jth monoenergetic source of the mth radionuclide at arrival time n.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Wang, Z., Tian, D. et al. On-line experiments on rapid detection of radionuclides based on sequential Bayesian analysis. J Radioanal Nucl Chem 306, 57–70 (2015). https://doi.org/10.1007/s10967-015-4072-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4072-y

Keywords

Navigation