Skip to main content
Log in

Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(VI) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this present study, a graphene-based magnetic composite (Fe3O4/GO) was prepared and characterized by SEM, TEM, XRD and FTIR. The immobilization of U(VI) onto Fe3O4/GO by a adsorption process was using a batch technique. The pseudo-second-order kinetic and Langmuir isotherm model could best describe the adsorption kinetics and isotherms. The thermodynamic parameters calculated from the temperature dependent adsorption isotherms revealed that the adsorption of U(VI) on Fe3O4/GO was spontaneous and endothermic in nature. The as-prepared Fe3O4/GO composite may be utilized as an efficient, magnetically separable adsorbent for the removal of U(VI) and related radionuclides from aqueous solutions in nuclear waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li ZJ, Chen F, Yuan LY, Liu YL, Zhao YL, Chai ZF, Shi WQ (2012) Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  2. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) J Toxicol Environ Health B 7:297–317

    Article  CAS  Google Scholar 

  3. Chapman N, Hooper A (2012) Proc Geol Assoc 123:46–63

    Article  Google Scholar 

  4. Hyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62

    Article  CAS  Google Scholar 

  5. Akyil S, Aslani MAA, Eral M (2003) J Radioanal Nucl Chem 256:45–51

    Article  CAS  Google Scholar 

  6. Sylwester ER, Hudson EA, Allen PG (2000) Geochim Cosmochim Acta 64:2431–2438

    Article  CAS  Google Scholar 

  7. Liao X, Lu Z, Xu D, Liu X, Shi B (2004) Environ Sci Technol 38:324–328

    Article  CAS  Google Scholar 

  8. Sheng GD, Yang Q, Peng F, Li H, Gao X, Huang YY (2014) Chem Eng J 245:10–16

    Article  CAS  Google Scholar 

  9. Kuhu AT (1972) Electrochemistry of cleaner environments. Plenum, New York

    Google Scholar 

  10. Mellah A, Chegrouche S, Barkat M (2007) Hydrometallurgy 85:163–171

    Article  CAS  Google Scholar 

  11. Singh H, Mishra SL, Vijayalakshmi R (2004) Hydrometallurgy 73:63–70

    Article  CAS  Google Scholar 

  12. Prasadaao TR, Metilda P, Gladis JM (2006) Talanta 68:1047–1064

    Article  Google Scholar 

  13. Baik MH, Cho WJ, Hahn PS (2004) J Radioanal Nucl Chem 260:495–502

    Article  CAS  Google Scholar 

  14. Sheng G, Shen R, Dong H, Li Y (2013) Environ Sci Pollut Res 20:3708–3717

    Article  CAS  Google Scholar 

  15. Koji O, Akhmad S, Toshio T, Mitsuko O, Shoji M (2009) Talanta 79:1031–1035

    Article  Google Scholar 

  16. Sheng G, Dong H, Li Y (2012) J Environ Radioact 113:108–115

    Article  CAS  Google Scholar 

  17. Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227–233

    Article  CAS  Google Scholar 

  18. Yu S, Ren A, Cheng J, Song X, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133

    Article  CAS  Google Scholar 

  19. Sheng G, Li Y, Yang X, Ren X, Yang S, Hu J, Wang X (2012) RSC Adv 2:12400–12407

    Article  CAS  Google Scholar 

  20. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  21. James D, Venkateswaran G, Rao TP (2009) Micropor Mesopor Mater 119:165–170

    Article  CAS  Google Scholar 

  22. Sherm DM, Peacock CL, Hubbar CG (2008) Geochim Cosmochim Acta 72:298–310

    Article  Google Scholar 

  23. Zhang XF, Ji LY, Wang J, Li RM, Liu Q, Zhang ML, Liu LH (2012) Colloids Surf A Physicochem Eng Aspects 414:220–227

    Article  CAS  Google Scholar 

  24. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  25. Balandin S, Ghosh WZ, Bao I, Calizo D, Teweldebrhan F, Miao CN (2008) Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  26. Caruso F, Spasova M, Susha A, Giersig M, Caruso RA (2001) Chem Mater 13:109–116

    Article  CAS  Google Scholar 

  27. Pileni MP (2001) Adv Funct Mater 5:323–336

    Article  Google Scholar 

  28. Ai LH, Zhang CY, Chen ZL (2011) J Hazard Mater 192:1515–1524

    Article  CAS  Google Scholar 

  29. Li XY, Wang X, Song SY, Liu DP, Zhang HJ (2012) Chem Eur J 18:7601–7607

    Article  CAS  Google Scholar 

  30. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1341

    Article  CAS  Google Scholar 

  31. Zong PF, Wang SF, Zhao YL (2013) Chem Eng J 220:45–52

    Article  CAS  Google Scholar 

  32. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F (2010) ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  33. Yao YJ, Miao SD, Liu SZ, Ma LP, Sun HQ, Wang SB (2012) Chem Eng J 184:326–332

    Article  CAS  Google Scholar 

  34. Guo J, Wang RY, Tjiu WW, Pan JS, Liu TX (2012) J Hazard Mater 225–226:63–73

    Article  Google Scholar 

  35. Chang YP, Ren CL, Qu JC, Chen XG (2012) Appl Surf Sci 261:504–509

    Article  CAS  Google Scholar 

  36. Moussavi G, Barikbin B (2010) Chem Eng J 162:893–900

    Article  CAS  Google Scholar 

  37. Belin C, Quellec C, Lamotte M, Ewald M, Simon P (1993) Environ Technol 114:1131–1144

    Article  Google Scholar 

  38. Guo XY, Du B, Wei Q, Yang J, Hu LH, Yan LG, Xu WY (2014) J Hazard Mater 278:211–220

    Article  CAS  Google Scholar 

  39. Sheng GD, Li YM, Dong HP, Shao DD (2012) J Radioanal Nucl Chem 293:797–806

    Article  CAS  Google Scholar 

  40. Chen CL, Wang XK (2006) Industr Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  41. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  42. Ho YS, McKay G (2000) Water Res 34:735–742

    Article  CAS  Google Scholar 

  43. Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2012) J Hazard Mater 95:137–152

    Article  Google Scholar 

  44. Genc HF, Tjell JC, McConchie D (2004) Environ Sci Technol 38:2428–2434

    Article  Google Scholar 

  45. Sheng G, Yang S, Li Y, Gao X, Huang Y, Wang X (2014) Radiochim Acta 102:155–167

    Article  CAS  Google Scholar 

  46. Sharma N, Kaur K, Kaur S (2009) J Hazard Mater 163:1338–1344

    Article  CAS  Google Scholar 

  47. Zhao GX, Wen T, Yang X, Yang SB, Liao JL, Hu J, Shao DD, Wang XK (2012) Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  48. Zhou YT, Nie HL, Branford-White C, He ZY, Zhu LM (2009) J Colloid Interf Sci 330:29–37

    Article  CAS  Google Scholar 

  49. Sheng GD, Hu BW (2013) J Radioanal Nucl Chem 298:455–464

    Article  CAS  Google Scholar 

  50. Sheng GD, Dong HP, Shen RP, Li YM (2013) Chem Eng J 217:486–494

    Article  CAS  Google Scholar 

  51. Zhao DL, Chen SH, Yang SB, Yang X, Yang ST (2011) Chem Eng J 166:1010–1016

    Article  CAS  Google Scholar 

  52. Xu D, Tan XL, Chen CL, Wang XK (2008) J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  53. Tahir SS, Rauf N (2003) J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  54. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  55. Li Y, Sheng G, Sheng J (2014) J Mol Liquids 199:474–480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (21377005) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Chen, L., Sun, M. et al. Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(VI) from aqueous solutions. J Radioanal Nucl Chem 306, 221–229 (2015). https://doi.org/10.1007/s10967-015-4064-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4064-y

Keywords

Navigation