Skip to main content
Log in

Interaction of paracetamol and 125I-paracetamol with surface groups of activated carbon: theoretical and experimental study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The selection of activated carbon (AC) filters for water decontamination is currently carried out empirically. The low concentrations of drugs in the environment make the radioisotope labeling a valuable tool for physical and chemical studies of the adsorption process. A theoretical study of paracetamol and 125I-paracetamol adsorption onto AC was performed to evaluate the interactions between pollutants and surface groups (SG) of AC. Paracetamol was labeled with 125I and adsorption isotherms were obtained using radioanalytical and spectrophotometric techniques. The radioanalytical method overestimates the paracetamol adsorption. The validity of the chosen approach for qualitative assessment of SG influence over the adsorption process was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quesada-Peñate I, Jáuregui-Haza UJ, Wilhelm AM, Delmas H (2009) Contaminación de las aguas con productos farmacéuticos. Estrategias para enfrentar la problemática. Rev CENIC Cienc Biol 40:173–179

    Google Scholar 

  2. Graham DW, Olivares-Rieumont S, Knapp CW, Lima L, Werner D, Bowen E (2011) Antibiotic resistance gene abundances associated with waste discharges to the Almendares river near Havana. Cuba Environ Sci Technol 45(2):418–424

    Article  CAS  Google Scholar 

  3. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  4. Alighardashi A, Pons MN, Potier O (2008) Occurrence and fate of pharmaceutical substances in urban wastewater, a literature mini-review. Rev Sci Eau 21(4):413–426

    CAS  Google Scholar 

  5. Grunga M, Kallqvista T, Sakshaugb S, Skurtveitb S, Thomasa KV (2008) Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline. Ecotoxicol Environ Saf 71:328–340

    Article  Google Scholar 

  6. Snyder SA (2008) Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone Sci Eng 30(1):65–69

    Article  CAS  Google Scholar 

  7. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814

    Article  CAS  Google Scholar 

  8. Onesios KM, Yu JT, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20(4):441–466

    Article  CAS  Google Scholar 

  9. Rahman MF, Yanful EK, Jasim SY (2009) Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: challenges in the context of the developing world. Desalination 248(1–3):578–585

    Article  CAS  Google Scholar 

  10. Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36(20):5013–5022

    Article  CAS  Google Scholar 

  11. Kolpin DW, Skopec M, Meyer MT, Furlong ET, Zaugg SD (2004) Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ 328(1–3):119–130

    Article  CAS  Google Scholar 

  12. Jones-Lepp TL, Alvarez DA, Petty JD, Huckins JN (2004) Polar organic chemical integrative sampling (POCIS) and LC-ES/ITMS for assessing selected prescription and illicit drugs in treated sewage effluents. Arch Environ Contam Toxicol 47(4):427–439

    Article  CAS  Google Scholar 

  13. Jayson GG, Lawless TA, Fairhurst D (1981) A radiotracer study of adsorption on activated carbon cloth from aqueous solution (the effect of pH). J Radioanal Nucl Chem 64(1–2):327–335

    Article  CAS  Google Scholar 

  14. Oubal M, Picaud S, Rayez MT, Rayez JC (2010) A theoretical characterization of the interaction of water with oxidized carbonaceous clusters. Carbon 48:1570–1579

    Article  CAS  Google Scholar 

  15. Faur C, Métivier-Pignon H, Le Cloirec P (2005) Multicomponent adsorption of pesticides onto activated carbon fibers. Adsorption 11:479–490

    Article  CAS  Google Scholar 

  16. Durimel A, Altenor S, Miranda-Quintana R, Couespel Du, Mesnil P, Jauregui-Haza U, Gadiou R, Gaspard S (2013) pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chem Eng J 229:239–249

    Article  CAS  Google Scholar 

  17. Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Szymański GS (2013) Influence of activated carbon surface oxygen functionalities on SO2 physisorption—Simulation and experiment. Chem Phys Lett 578:85–91

    Article  CAS  Google Scholar 

  18. Terzyk AP, Gauden PA, Zielin W, Furmaniak S, Wesołowski RP, Klimek KK (2011) First molecular dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons. Chem Phys Lett 515:102–108

    Article  CAS  Google Scholar 

  19. Terzyk AP (2004) Molecular properties and intermolecular forces-factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. J Colloid Interface Sci 275(1):9–29

    Article  CAS  Google Scholar 

  20. Jensen B, Kuznetsova T, Kvamme B, Oterhals A (2011) Molecular dynamics study of selective adsorption of PCB on activated carbon. Fluid Phase Equilib 307(1):58–65

    Article  CAS  Google Scholar 

  21. Terzyk AP (2002) Describing adsorption of paracetamol from aqueous solution on carbons while utilizing the most widespread isotherm models-the impact of surface carbonyl and basic groups. J Colloid Interface Sci 247:507–510

    Article  CAS  Google Scholar 

  22. Terzyk AP (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloid Surf A 177:23–45

    Article  CAS  Google Scholar 

  23. Terzyk AP, Rychlicki G, Biniak S, Łukaszewicz JP (2003) New correlations between the composition of the surface layer of carbon and its physicochemical properties exposed while paracetamol is adsorbed at different temperatures and pH. J Colloid Interface Sci 257:13–30

    Article  CAS  Google Scholar 

  24. Terzyk AP (2000) The impact of carbon surface composition on the diffusion and adsorption of paracetamol at different temperatures and at neutral pH. J Colloid Interface Sci 230:219–222

    Article  CAS  Google Scholar 

  25. Terzyk AP, Rychlicki G (2000) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro The temperature dependence of adsorption at the neutral pH. Colloid Surf A 163:135–150

    Article  CAS  Google Scholar 

  26. Montero LA, Esteva AM, Molina J, Zapardiel A, Hernández L, Márquez H, Acosta A (1998) A theoretical approach to analytical properties of 2,4-diamino-5-phenylthiazole in water solution. Tautomerism and dependence on pH. J Am Chem Soc 120(46):12023–12033

    Article  CAS  Google Scholar 

  27. Montero LA, Llano J, Molina J, Fabian J (2000) Multiple minima hypersurfaces of water clusters for calculations of association energy. Int J Quantum Chem 79:8–16

    Article  CAS  Google Scholar 

  28. Hernández-Valdés D, Enriquez-Victorero C, Jáuregui-Haza U, Hernández-Valdés P, González-Santana S (2013) GRANADA modificado con restricción geométrica. Rev Cub Cien Inf 7(1):9–15

    Google Scholar 

  29. Available by request: <http://karin.qct.fq.oc.uh.cu/mmh/>

  30. Enriquez-Victorero C, Hernández-Valdés D, Montero-Alejo AL, Durimel A, Gaspard S, Jáuregui-Haza U (2014) Theoretical study of γ-hexachlorocyclohexane and β-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model. J Mol Graph Model 51:137–148

    Article  CAS  Google Scholar 

  31. Cabaleiro-Lago EM, Rodríguez-Otero J, Peña-Gallego Á (2008) Computational study on the characteristics of the interaction in naphthalene···(H2X)n = 1, 2 (X = O, S) clusters. J Phys Chem A 112:6344–6350

    Article  CAS  Google Scholar 

  32. Jenness GR, Jordan KD (2009) DF-DFT-SAPT investigation of the interaction of a water molecule to coronene and dodecabenzocoronene: implications for the water-graphite interaction. J Phys Chem C 113:10242–10248

    Article  CAS  Google Scholar 

  33. Cho Y, Min SK, Yun J, Kim WY, Tkatchenko A, Kim KS (2013) Noncovalent interactions of DNA bases with naphthalene and graphene. J Chem Theory Comput 9:2090–2096

    Article  CAS  Google Scholar 

  34. Lazar P, Zhang S, Šafářová K, Li Q, Froning JP, Granatier J et al (2013) Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions. ACS Nano 7:1646–1651

    Article  CAS  Google Scholar 

  35. Lazar P, Karlický F, Jurečka P, Kocman M, Otyepková E, Šafářová K et al (2013) Adsorption of small organic molecules on graphene. J Am Chem Soc 135:6372–6377

    Article  CAS  Google Scholar 

  36. Granatier J, Lazar P, Prucek R, Šafářová K, Zbořil R, Otyepka M et al (2012) Interaction of graphene and arenes with noble metals. J Phys Chem C 116:14151–14162

    Article  CAS  Google Scholar 

  37. Granatier J, Lazar P, Otyepka M, Hobza P (2011) The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD(T) calculations to plane-wave DFT calculations. J Chem Theory Comput 7:3743–3755

    Article  CAS  Google Scholar 

  38. Oubal M, Picaud S, Rayez MT, Rayez JC (2010) Interaction of water molecules with defective carbonaceous clusters : an ab initio study. Surf Sci 604:1666–1673

    Article  CAS  Google Scholar 

  39. Picaud S, Collignon B, Hoang NM, Rayez JC (2008) Adsorption of water molecules on partially oxidized graphite surfaces : a molecular dynamics study of the competition between OH and COOH sites. Phys Chem Chem Phys 10:6998–7009

    Article  CAS  Google Scholar 

  40. Collignon B, Hoang PNM, Picaud S, Rayez JC (2005) Clustering of water molecules on model soot particles: an ab initio study. Comput Lett 1(4):277–287

    Article  CAS  Google Scholar 

  41. de la Puente G, Pis JJ, Menéndez JA, Grange P (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrol 43:125–138

    Article  Google Scholar 

  42. Figueiredo JL, Pereira MFR, Freitas MMA, Órfao JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389

    Article  CAS  Google Scholar 

  43. Morera C, Alonso E, González R, Montero LA, García JM (2009) A theoretical approach to the solvation of brassinosteroids. J Mol Graph Model 27:600–610

    Article  Google Scholar 

  44. Morera C, Mora N, Montero LA, Alonso E, González RH, García JM (2009) Interaction of brassinolide with essential amino acid residues: a theoretical approach. J Mol Graph Model 5931:1–8

    Google Scholar 

  45. Coronado JLG, Martín E, Montero LA, Fierro JLG, de la Vega JG (2007) Effects of the 3- and 4-methoxy and acetamide substituents and solvent environment on the electronic properties of N-substituted 1,8-naphthalimide derivatives. J Phys Chem A 111:9724–9732

    Article  CAS  Google Scholar 

  46. Codorniu E, Mesa A, Hernández R, Montero LA, Martínez F, Santana JL, Borrmann T, Stohrer WD (2005) Essential amino acids interacting with flavonoids : a theoretical approach. Int J Quantum Chem 103:82–104

    Article  Google Scholar 

  47. Codorniu E, Mesa A, Montero LA, Martínez F, Borrmann T, Stohrer WD (2002) Theoretical study of flavonoids and proline interactions: aqueous and gas phases. J Mol Struct (Theochem) 623:63–73

    Article  Google Scholar 

  48. Crespo R, Pérez Y, Padrón JA, Montero LA (2007) Exploring the potential energy surfaces of association of NO with amino acids and related organic functional groups: the role of entropy of association. Theor Chem Acc 118:649–663

    Article  Google Scholar 

  49. Montero LA, Perez Y, Mora MJ (2008) An approach to hydration of model silica materials by exploring their multiple minima hypersurfaces: the role of entropy of association. J Phys Chem A 112:2880–2887

    Article  Google Scholar 

  50. Stewart JJP (2007) Optimization of parameters for semiempirical methods V : modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. doi:10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  51. Korth M, Pitoňák M, Řezáč J, Hobza P (2010) A transferable H-bonding correction for semiempirical quantum-chemical methods. J Chem Theory Comput 6(1):344–352

    Article  CAS  Google Scholar 

  52. Řezáč J, Hobza P (2011) A halogen-bonding correction for the semiempirical PM6 method. Chem Phys Lett 506:286–289

    Article  Google Scholar 

  53. Hobza P (2012) Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc Chem Res 45(4):663–672

    Article  CAS  Google Scholar 

  54. Řezáč J, Riley KE, Hobza P (2012) Benchmark calculations of noncovalent interactions of halogenated molecules. J Chem Theory Comput 8:4285–4292

    Article  Google Scholar 

  55. Stewart JJP (2012) MOPAC2012, Stewart Computational Chemistry. http://openmopac.net

  56. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. (1993) General Atomic and Molecular Electronic Structure System. J Comput Chem 14:1347–1363

  57. EL-Ghany EA, Farouk N, EL-Kolaly MT (1999) Fast efficient method for radiolabeling of pindolol with iodine-125 using iodogen coated glass frit. J Radioanal Nucl Chem 245(2):243–247

    Article  Google Scholar 

  58. Hussien H, Goud AA, Amin AM, EL-Sheikh R, Seddik U (2011) Comparative study between chloramine-T and iodogen to prepare radioiodinated etodolac for inflammation imaging. J Radioanal Nucl Chem 288:9–15

    Article  CAS  Google Scholar 

  59. Lambrecht FY, Durkan K, Yildirim Y, Acar C (2006) Labeling of acetaminophen with I-131 and biodistribution in rats. Chem Pharm Bull 54(2):245–247

    Article  CAS  Google Scholar 

  60. Quesada-Peñate I, Julcour-Lebigue C, Jáuregui-Haza UJ, Wilhelm AM, Delmas H (2009) Comparative adsorption of levodopa from aqueous solution on different activated carbons. Chem Eng J 152:183–188

    Article  Google Scholar 

  61. Meghea A, Rehner HH, Peleanu I, Mihalache R (1997) Test-fitting on adsorption isotherms of organic pollutants from waste waters on activated carbon. J Radioanal Nucl Chem 229(1–2):105–110

    Google Scholar 

  62. Mihalache R, Peleanu I, Meghea I, Tudorache A (1998) Competitive adsorption models of organic pollutants from bi- and tri-solute systems on activated carbon. J Radioanal Nucl Chem 229(1–2):133–137

    Article  CAS  Google Scholar 

  63. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  64. Moreau M, Valentin P, Vidal C, Lin BC, Guiochon G (1991) Adsorption isotherm model for multicomponent adsorbate-adsorbate interactions. J Colloid Interface Sci 141:127–136

    Article  CAS  Google Scholar 

  65. Quiñones I, Guiochon G (1996) Isotherm models for localized monolayers with lateral interactions. Application to single-component and competitive adsorption data. Langmuir 12:5433–5443

    Article  Google Scholar 

  66. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  67. Scheiner S, Kar T, Pattanayak J (2002) Comparison of various types of hydrogen bonds involving aromatic amino acids. J Am Chem Soc 124:13257–13264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Computational and Theoretical Chemistry Laboratory of the University of Havana for their support with the calculation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises Jáuregui-Haza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10967_2015_4022_MOESM1_ESM.pdf

A full set of minima structures for complexes representing main interactions present in all systems can be seen in the electronic supplementary material. Supplementary material 1 (PDF 1793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Valdés, D., Enriquez-Victorero, C., Pizarro-Lou, L. et al. Interaction of paracetamol and 125I-paracetamol with surface groups of activated carbon: theoretical and experimental study. J Radioanal Nucl Chem 305, 609–622 (2015). https://doi.org/10.1007/s10967-015-4022-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4022-8

Keywords

Navigation