Skip to main content
Log in

Exploring the potential energy surfaces of association of NO with aminoacids and related organic functional groups: the role of entropy of association

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Association between NO and each of the 20 amino acids and their related organic functional groups was studied by exploring the configuration space of the potential energy of association surface by using the multiple minima hypersurface procedure. AM1 semiempirical Hamiltonian was used in order to explore such complex hypersurfaces of biological molecular interactions at finite computational times. An appropriate test with a set of NO and small molecule complexes obtained at the MP2/6-311++g(2d,2p) level of theory was also carried out. Stabilization energies of larger models were also evaluated at the conventional PBE1PBE/6-31g(d,p) DFT level. NO–aminoacid hypersurface explorations yielded that interactions of NO with NH group together with the C=O belonging to the backbone appeared predominant in all cases. Models of polar aminoacids and NO also show stable interactions with the lateral chains. Interactions with charged amino acids were found as the most stable and Lys was, undoubtedly, the preferred association. The study of these kinds of interactions must take into account the deepest and other minima because the entropy of association plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moncada S and Higgs A (1993). New Engl J Med 329: 2002

    Article  CAS  Google Scholar 

  2. Koshland DE Jr (1992). Science 258: 1861

    Article  Google Scholar 

  3. Richter-Addo GB, Legzdinns P and Burstyn J (2002). Chem Rev 102: 358

    Article  Google Scholar 

  4. Radi R (1996). Chem Res Toxicol 9: 828

    Article  CAS  Google Scholar 

  5. Scherlis DA, Martí MA, Ordejón P and Estrín D (2002). Int J Quantum Chem 90: 1505

    Article  CAS  Google Scholar 

  6. Bossa C, Anselmi M, Roccatano D, Amadei A, Vallone B, Brunori M and Di Nola A (2004). Biophys J 86: 3855

    Article  CAS  Google Scholar 

  7. Cohen J, Arkhipov A, Braun R and Schulten K (2006). Biophys J 91: 1844

    Article  CAS  Google Scholar 

  8. Fraga S and Parker JMR (1994). Amino Acids 7: 175

    Article  CAS  Google Scholar 

  9. Duijneveldt FB, Duijneveldt-van de Rijdt JGCM and Lenthe JH (1994). Chem Rev 94: 873

    Article  Google Scholar 

  10. Hadži D (ed.) (1997) Theoretical treatments of hydrogen bonding. Wiley, New York, Chapter 5, p 95

  11. Montero LA, Esteva AM, Molina J, Zapardiel A, Hernández L, Márquez H and Acosta A (1998). J Am Chem Soc 120: 12023

    Article  CAS  Google Scholar 

  12. Montero LA, Molina J and Fabian J (2000). Int J Quantum Chem 79: 8

    Article  CAS  Google Scholar 

  13. Crespo-Otero R, Montero LA; Stohrer W-D and García de la Vega JM (2005). J Chem Phys 123: 134107

    Article  Google Scholar 

  14. Boys SF and Bemardi F (1970). Mol Phys 9: 553

    Article  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004). Gaussian 03, Revision c.02. Gaussian, Inc., Wallingford

    Google Scholar 

  16. Codorniu-Hernández E, Mesa-Ibirico A, Montero-Cabrera LA, Martínez-Luzardo F, Borrmann T and Stohrer W-D (2002). THEOCHEM 623: 63

    Article  Google Scholar 

  17. http://karin.qct.fq.oc.uh.cu/mmh/. Available by request

  18. George L, Sanchez-Garcia E and Sander W (2004). J Phys Chem A 107: 6850

    Article  Google Scholar 

  19. Sanchez-Garcia E, George L, Montero LA and Sander W (2004). J Phys Chem A 108: 11846

    Article  CAS  Google Scholar 

  20. Codorniu-Hernández E, Mesa-Ibirico A, Hernández -Santiesteban R, Montero-Cabrera LA, Santana-Romero JL, Borrmann T, Stohrer W-D and Martínez-Luzardo (2005). Int J Quantum Chem 3: 82

    Article  Google Scholar 

  21. Padrón-García JA, Crespo-Otero R, Hernández-Rodríguez EW, Garriga P, Montero LA and García-Piñeiro JC (2004). Proteins 57: 392

    Article  Google Scholar 

  22. Schönfeld P, Fabian J and Montero L (2005). Biophys J 89: 1504

    Article  Google Scholar 

  23. Stewart JJP (1993–1997) MOPAC, v. 6, Release for PC computers in the laboratory of computational and theoretical chemistry, Universidad de La Habana

  24. Farrugia LJ (1997). J Appl Crystallogr 30: 565

    Article  CAS  Google Scholar 

  25. Zhao Y and Truhlar DG (2006). J Chem Theory Comput 2: 1009

    Article  CAS  Google Scholar 

  26. Myszkiewicz G and Sadlej J (2000). Chem Phys Lett 318: 232

    Article  CAS  Google Scholar 

  27. Ball DW (1997). J Phys Chem A 101: 4835

    Article  CAS  Google Scholar 

  28. Frendin L (1973). Chem Scr 4: 97

    Google Scholar 

  29. Ascenzi P, Colasanti M, Persichini T, Muolo M, Polticelli F, Venturini G, Bordo D and Bolognesi M (2000). Biol Chem 381: 623

    Article  CAS  Google Scholar 

  30. Moreno E and León K (2002). Proteins 47: 1

    Article  CAS  Google Scholar 

  31. Zhou Z, Todd BD, Travis KP and Sadus RJ (2005). J Chem Phys 123: 054505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alberto Montero-Cabrera.

Additional information

Dedicated to Prof. Serafín Fraga, an unforgettable friend.

Contribution to the Serafin Fraja Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo-Otero, R., Pérez-Badell, Y., Padrón-García, J.A. et al. Exploring the potential energy surfaces of association of NO with aminoacids and related organic functional groups: the role of entropy of association. Theor Chem Account 118, 649–663 (2007). https://doi.org/10.1007/s00214-007-0346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0346-y

Keywords

Navigation