Skip to main content
Log in

Implementation of calculation codes in gamma spectrometry measurements for corrections of systematic effects

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Four calculation codes were implemented on experimental data to calculate corrections of common systematic effects within high resolution gamma spectrometry. The detector parameters were sparsely optimized to imitate the usage that can be expected from personnel with limited experience. The transfer of the efficiency from the calibration geometry (60 ml, density 1.0 g/cm3) to 200 ml geometry (density 1.5 g/cm3) failed with all codes, which was discouraging. However, a majority of the other corrected activities deviated with less than 10 % from the reference activity values, even for density corrections or when corrections had been calculated for new source-detector-geometries. Smaller deviations, around 5 % or less, were achieved when corrections were done within the calibrated geometry. This shows a robustness of the calculation codes even if the in-data is not perfectly optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andreev DS, Erokhina KI, Zvonov VS, Lemberg IKh (1973) Determination of ɣ-detection efficiency in energy peaks by means of nuclides having complicated decay scheme in close-geometry conditions. Izv Akad Nauk SSSR Ser Fiz 37(8):1609–1612

    CAS  Google Scholar 

  2. Jackman KR, Biegalski SR (2009) Methods and software for predicting germanium detector absolute full-energy peak efficiencies. J Radioanal Nucl Chem 279:355–360

    Article  CAS  Google Scholar 

  3. Vargas MJ, Timón A, Díaz NC, Sánchez DP (2002) Influence of the geometrical characteristics of an HPGe detector on its efficiency. J Radioanal Nucl Chem 253:439–443

    Article  CAS  Google Scholar 

  4. Helmer RG, Hardy JC, Iacob VE, Sanchez-Vega M, Neilson RG, Nelson J (2003) The use of Monte Carlo calculations in the determination of a Ge detector efficiency curve. Nucl Instrum Meth Phys Res A 511:360–381

    Article  CAS  Google Scholar 

  5. Ródenas J, Pascual A, Zarza I, Serradell V, Ortiz J, Ballesteros L (2003) Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl Instrum Meth Phys Res A 496:390–399

    Article  Google Scholar 

  6. Maleka PP, Maučec M (2005) Monte Carlo uncertainty analysis of germanium detector response to γ-rays with energies below 1 MeV. Nucl Instrum Meth Phys Res A 538:631–639

    Article  CAS  Google Scholar 

  7. Johnston P, Hult M, Gasparro J (2006) Cascade summing in close geometry gamma-ray spectrometry. Appl Radiat Isot 64:1323–1328

    Article  CAS  Google Scholar 

  8. Mihaljević N, Dlabač A, Jovanović S (2012) Accounting for detector crystal edge rounding in gamma-efficiency calculations theoretical elaboration and application in ANGLE software. Nucl Tech Rad Prot 27:1

    Article  Google Scholar 

  9. Moens L, De Donder J, Xilei L, De Corte F, De Wispelaere A, Simonts A (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instrum Meth Phys Res 187:451–472

    Article  CAS  Google Scholar 

  10. Vidmar T, Vodenik B, Nečemer M (2010) Efficiency transfer between extended sources. Appl Radiat Isot 68:2352–2354

    Article  CAS  Google Scholar 

  11. Szentmiklósi L, Belgya T, Maróti B, Kis Z (2014) Characterization of HPGe gamma spectrometers by geant4 Monte Carlo simulations. J Radioanal Nucl Chem 300:553–558

    Article  Google Scholar 

  12. Kováčik A, Sýkora I, Povinec PP (2013) Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J Radioanal Nucl Chem 298:665–672

    Article  Google Scholar 

  13. Bossus DAW, Swagten JJJM, Kleinjans PAM (2006) Experience with a factory-calibrated HPGe detector. Nucl Instrum Meth Phys Res A 564:650–654

    Article  CAS  Google Scholar 

  14. Lépy M-C, Altzitzoglou T, Anagnostakis MJ, Arnold D, Capogni M, Ceccatelli A, De Felice P, Dersch R, Dryak P, Fazio A, Ferreux L, Guardati M, Han J, B, Hurtado S, Karfopoulos KL, Klemola S, Kovar P, Laubenstein M, Lee KB, Ocone R, Ott O, Sima O, Sudar S, Švec A, Chau Van Tao, Tran Thien Thanh, Vidmar T (2010) Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry. Appl Radiat Isot 68:1407–1412

  15. Vidmar T, Çelik N, Cornejo Díaz N, Dlabac A, Ewa IOB, Carrazana González JA, Hult M, Jovanović S, Lépy M-C, Mihaljević N, Sima O, Tzika F, Jurado Vargas M, Vasilopoulo T, Vidmar G (2010) Testing efficiency transfer codes for equivalence. Appl Radiat Isot 68:355–359

    Article  CAS  Google Scholar 

  16. Vidmar T, Capogni M, Hult M, Hurtado S, Kastlander J, Lutter G, Lépy M-C, Martinkovič J, Ramebäck H, Sima O, Tzika F, Vidmar G (2014) Equivalence of computer codes for calculation of coincidence summing correction factors. Appl Radiat Isot 87:336–341

    Article  CAS  Google Scholar 

  17. Plenteda R (2002) A Monte Carlo based virtual gamma spectroscopy laboratory. Ph.D. Thesis. Universitätsbibliothek der Technischen Universität Wien

  18. Sima O, Arnold D, Dovlete C (2001) GESPECOR: a versatile tool in gamma-ray spectrometry. J Radioanal Nucl Chem 248(2):359–364

    Article  CAS  Google Scholar 

  19. Jovanović S, Dlabač A, Mihaljević N (2010) ANGLE v2, 1—New versions of the computer code for semiconductor detector gamma-efficiency calculations. Nucl Instrum Meth Phys Res A 622:385–391

    Article  Google Scholar 

  20. Vidmar T (2005) EFFTRAN—A Monte Carlo efficiency transfer code for gamma ray spectrometry. Nucl Instrum Meth Phys Res A 550:603–608

    Article  CAS  Google Scholar 

  21. Ramebäck H, Tovedal A, Nygren U, Lagerkvist P, Boson J, Johansson E, Johansson J (2009) Implementing combined uncertainty according to GUM into a commercial gamma spectrometric software. J Radioanal Nucl Chem 282:979–983

    Article  Google Scholar 

  22. Lépy MC, Altzitzoglou T, Arnold D, Bronson F, Capote Noy R, Décombaz M, De Corte F, Edelmaier R, Herrera Peraza E, Klemola S, Korun M, Kralik M, Neder H, Plagnard J, Pommé S, de Sanoit J, Sima O, Ugletveit F, Van Velzen L, Vidmar T (2001) Intercomparison of efficiency transfer software for gamma-ray spectrometry. Appl Radiat Isot 55:493–503

    Article  Google Scholar 

  23. Sima O, Arnold D (2000) Accurate computation of coincidence summing corrections in low level gamma-ray spectrometry. Appl Radiat Isot 53:51–56

    Article  CAS  Google Scholar 

  24. Sima O, Arnold D (2002) Transfer of the efficiency calibration of Germanium gamma-ray detectors using the GESPECOR software. Appl Radiat Isot 56:71–75

    Article  CAS  Google Scholar 

  25. Kessel R, Berglund M, Taylor PDP, Wellum R (2001) How to treat correlations in the uncertainty budget, when combining results from different measurements. S Adv Math 57:231–241

    Google Scholar 

  26. Pereira de Oliveira Junior O, De Bolle W, Alonso A, Richter S, Wellum R, Ponzevera E, Sarkis JES, Kessel R (2010) Int J Mass Spectrom 291:48–54

    Article  Google Scholar 

  27. Vidmar T, Vodenik B (2010) Extended relative method of activity determination. Appl Radiat Isot 68:2421–2424

    Article  CAS  Google Scholar 

  28. Vidmar T, Aubineau-Laniece I, Anagnostakis MJD, Arnold Brettner-Messler R, Budjas D, Capogni M, Dias MS, De Geer L-E, Fazio A, Gasparro J, Hult M, Hurtado S, Vargas MJ, Laubenstein M, Lee KB, Lee Y-K, Lépy M-C, Maringer F-J, Medina Peyres V, Mille M, Moralles M, Nour S, Plenteda R, Rubio Montero MP, Sima O, Tomei C, Vidmar G (2008) An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Appl Radiat Isot 66:764–768

    Article  CAS  Google Scholar 

  29. Xie F, Jiang W, Bai T, Yu G (2014) A study on activity determination of volume sources using point-like standard sources and Monte Carlo simulations. Radiat Phys Chem 103:53–56

    Article  CAS  Google Scholar 

  30. Vidmar T, Gasparro J (2009) Crystal rounding and the efficiency transfer method in gamma-ray spectrometry. Appl Radiat Isot 67:2057–2061

    Article  CAS  Google Scholar 

  31. Russ W, Venkataraman R, Bronson F (2005) Validation testing of the genie 2000 cascade summing correction. J Radioanal Nucl Chem 264:193–197

    Article  CAS  Google Scholar 

  32. Abbas M, Simonelli F, Alberti FD, Forte M, Stroosnijder MF (2002) Reliability of two calculation codes for efficiency calibration of HPGe detectors. Appl Radiat Isot 56:703–709

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Swedish Ministry of defence is greatly acknowledged for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Jonsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonsson, S., Vidmar, T. & Ramebäck, H. Implementation of calculation codes in gamma spectrometry measurements for corrections of systematic effects. J Radioanal Nucl Chem 303, 1727–1736 (2015). https://doi.org/10.1007/s10967-014-3748-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3748-z

Keywords

Navigation