Skip to main content
Log in

Optimized and validated wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) method for the determination of uranium in phosphogypsum

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An optimized and validated wavelength-dispersive X-ray fluorescence spectrometry method has been developed for the determination of uranium in phosphogypsum. The method is based on the measurement of the intensities of the Lα1 line for uranium. The concentration of uranium in the phosphogypsum is in the order of 100 ppm with a coefficient of variation of 0.7 %. The method was validated in the concentration range of (0–125) ppm and the different criteria: linearity, specificity, accuracy, repeatability and reproducibility were tested and found acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martín JE, García-Tenorio R, Respaldiza MA, Ontalba MA, Bolívar JP, da Silva MF (1999) TTPIXE analysis of phosphate rocks and phosphogypsum. J Appl Radiat Isot 50:445–449

    Article  Google Scholar 

  2. Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  CAS  Google Scholar 

  3. Bourane ZK (1983) The world market of phosphates and phosphated characteristic and perspective fertilizers. The library of raw materials. Collection managed by Philippe Chamelin, Paris

  4. Tunisian Chemical group GCT (1992) Study of impact on the environment of the rejections (discharges) of Phosphogypse. Ministry of the Environment and the town and country planning, Tunisia

  5. Lopez-de-Alba PL, Gonzalez S, Gomez Lara J (1989) Gravimetric determination of uranyl ion with 2-hydroxy-1-naphthaldehyde/2H-1N/. J Radioanal Nucl Chem 136:203–210

    Article  CAS  Google Scholar 

  6. Ripan R, Sacelean V (1965) Une nouvelle méthode pour le dosage gravimétrique de l’uranium. Talanta 12:69–72

    Article  CAS  Google Scholar 

  7. Das Mrinal K, Majumdar AK (1970) N-benzoyl-o-tolylhydroxylamine as a gravimetric reagent for uranium (VI). Anal Chim Acta 50:243–247

    Article  Google Scholar 

  8. Al Ammar AS, Basheer HM (1993) Further development in the high-precision volumetric method for the determination of uranium in nuclear-grade uranium compounds. J Radioanal Nucl Chem 171:435–441

    Article  CAS  Google Scholar 

  9. Hong KB, Jung KW (1989) Application of laser-induced fluorescence for determination of trace uranium, europium and samarium. Talanta 36:1095–1099

    Article  CAS  Google Scholar 

  10. Nivens DA, Zhang Y, Angel SM (2002) Detection of uranyl ion via fluorescence quenching and photochemical oxidation of calcein. J Photochem Photobiol A 152:167–173

    Article  CAS  Google Scholar 

  11. Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77:9–20

    Article  CAS  Google Scholar 

  12. Sanjukta Kumar A, Niyoti Shenoy S, Pandey S, Sounderajan S, Venkateswaran G (2008) Direct determination of uranium in seawater by laser fluorimetry. Talanta 77:422–426

    Article  Google Scholar 

  13. Anwar M, Mohammad D (1989) Potentiometric determination of free acidity and uranium in uranyl nitrate solutions. J Radioanal Nucl Chem 134:45–51

    Article  CAS  Google Scholar 

  14. Mlakar M, Branica M (1989) Stripping voltammetric determination of trace levels of uranium by synergic adsorption. Anal Chim Acta 221:279–287

    Article  CAS  Google Scholar 

  15. McMahon AW (1993) Application of analytical methods based on X-ray spectroscopy to the determination of radionuclides. Sci Total Environ 130:285–295

    Article  Google Scholar 

  16. Voldet P (1972) Dosage de traces d’uranium, de thorium et de plomb par fluorescence-x étude sur des “zircons” synthétiques et application à quelques zircons naturels du Groenland. Anal Chim Acta 62:297–304

    Article  CAS  Google Scholar 

  17. Woltermann HA, Eckstein RR, Redding PL, Tomes SA (1974) Determination of thorium in plutonium by X-ray spectrometry. J Nucl Mater 54:117–120

    Article  CAS  Google Scholar 

  18. Aydin FA, Soylak M (2007) Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72:192–197

    Article  Google Scholar 

  19. Benkhedda K, Epov V, Evans N, Douglas R (2005) Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry. Anal Bioanal Chem 381:1596–1603

    Article  CAS  Google Scholar 

  20. Zheng J, Yamada M (2006) Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography. Talanta 68:932–939

    Article  CAS  Google Scholar 

  21. AFNOR NF XP T 90-210 (1999) Water quality—Protocol for the evaluation of an alternative quantitative physico-chemical analysis method against a reference method

  22. AFNOR NF ISO 5725-1 (1994) Application of statistics. Accuracy (trueness and precision) of measurement methods and results. Part 1: general principles and definitions

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Guitouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guitouni, M. Optimized and validated wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) method for the determination of uranium in phosphogypsum. J Radioanal Nucl Chem 303, 1649–1657 (2015). https://doi.org/10.1007/s10967-014-3741-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3741-6

Keywords

Navigation