Skip to main content
Log in

Separation and recovery of ruthenium from nitric acid medium by electro-oxidation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Electro-oxidation method was employed for the separation of Ru as RuO4 vapour, from nitrosyl nitrate and simulated high level liquid waste (SHLLW) solutions. Separation of 95 and 54 % Ru were accomplished from RuNO(NO3)3 and SHLLW respectively, in 1 M nitric acid using 20 mA cm−2 as the anodic current density and with 0.02 M Ce as the redox catalyst at 318 K, using an undivided cell. To minimize the deleterious effect of nitrite ions, a divided cell with glass frit as the diaphragm was designed and 75 and 80 % Ru were separated from the nitrosyl nitrate and SHLLW solutions at 313 ± 2 K, in 4 M HNO3 without any catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ache HJ, Baestle LH, Bush RP, Nechaev AF, Popik VP, Ying Y (1989) Feasibility study of separation and utilization of Ru, Rh and Pd from high level waste. Technical Reports Series No. 308. IAEA, Vienna

  2. Martin JE (2006) A hand book of physics for radiation protection, 2nd edn. Wiley-VCH, Weinheim, p 775

    Book  Google Scholar 

  3. Motojima K (1989) Removal of ruthenium from PUREX process. J Nucl Sci Technol 26:358–364

    Article  CAS  Google Scholar 

  4. Krause Ch, Luckscheiter B (1991) Properties and behavior of platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste. J Mater Res 6:2535–2546

    Article  CAS  Google Scholar 

  5. Pravati Swain, Mallika C, Srinivasan R, Kamachi Mudali U, Natarajan R (2013) Separation and recovery of ruthenium: a review. J Radioanal Nucl Chem 298:781–796

    Article  Google Scholar 

  6. Clark WE, Godbee HW (1964) US Patent 3,120,493

  7. Ayabe T, Tatsugae R (1989) Chem Abstr 110:143304c

    Google Scholar 

  8. Gandon R, Boust D, Bedue O (1993) Ruthenium complexes originating from the Purex process: coprecipitation with copper ferrocyanides via ruthenocyanide formation. Radiochim Acta 61:41–45

    CAS  Google Scholar 

  9. Naito K, Matsui T, Nakahira H, Kitagawa M, Okada H (1991) Recovery and mutual separation of noble metals from the simulated insoluble residue of spent fuel. J Nucl Mater 184:30–38

    Article  CAS  Google Scholar 

  10. Hyman HH, Leader GR (1959) US Patent 2,894,816

  11. Polak P (1977) Ion exchange separations of nitrosyl complexes of ruthenium in hydrochloric acid. Radiochim Acta 24:193–195

    CAS  Google Scholar 

  12. Blum JM, Jaumier JJ, Verot JL (1973) Chem Abstr 79:1395393g

    Google Scholar 

  13. Griess JC Jr (1953) The quantitative electrodeposition of radioruthenium. J Electrochem Soc 100:429–433

    Article  CAS  Google Scholar 

  14. Lietzke MH, Griess JC Jr (1953) A study of the electrodeposition of ruthenium from very dilute solution. J Electrochem Soc 100:434–441

    Article  CAS  Google Scholar 

  15. Kobayashi Y, Yamatera H, Okuno H (1965) The electrodeposition of ruthenium from a Ru(III) and Ru(IV) solution and a fission product’s solution. Bull Chem Soc Jpn 38:1911–1915

    Article  CAS  Google Scholar 

  16. Molenda E, Mielcarski M (1998) Electrodeposition of 106Ru and 241Am and derived information on preparing sealed radiation sources. J Radioanal Nucl Chem 238:159–162

    Article  CAS  Google Scholar 

  17. Jayakumar M, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2010) Feasibility studies on the electrochemical recovery of fission platinoids from high-level liquid. J Radioanal Nucl Chem 284:79–85

    Article  CAS  Google Scholar 

  18. Jayakumar M, Venkatesan KA, Sudha R, Srinivasan TG, Vasudeva Rao PR (2011) Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: recovery and surface morphology of the deposits. Mater Chem Phys 128:141–150

    Article  CAS  Google Scholar 

  19. Turner AD (1989) US Patent 4879006

  20. Motojima K (1990) US Patent 4938895

  21. Motojima K (1990) Removal of ruthenium from PUREX process (II) fundamental research of electrolytic oxidation of ruthenium. J Nucl Sci Technol 27:262–266

    Article  CAS  Google Scholar 

  22. Yoneya M, Kawamura K, Torata SI, Takahashi T (1995) US Patent 5437847

  23. Mousset F, Bedioui F, Eysseric C (2004) Electroassisted elimination of ruthenium from dissolved RuO2, xH2O in nitric acid solution by using Ag(II) redox mediator: toward a new insight into the nuclear fuel reprocessing. Electrochem Commun 6:351–356

    Article  CAS  Google Scholar 

  24. Satyabrata M, Falix L, Sreenivasan R, Pandey NK, Mallika C, Koganti SB, Kamachi Mudali U (2010) Development of a continuous homogeneous process for denitration by treatment with formaldehyde. J Radioanal Nucl Chem 285:687–695

    Article  Google Scholar 

  25. Siczek AA, Steindler MJ (1978) The chemistry of ruthenium and zirconium in the Purex solvent extraction process. At Energy Rev 16:575–618

    CAS  Google Scholar 

  26. Boswell GGJ, Soentono S (1981) Ruthenium nitrosyl complexes in nitric acid solutions. J Inorg Nucl Chem 43:1625–1632

    Article  CAS  Google Scholar 

  27. Sini K, Mishra Satyabrata, Lawrence Falix, Mallika C, Koganti SB (2011) Destruction of soluble organics generated during the dissolution of sintered uranium carbide by mediated electrochemical oxidation process. Radiochim Acta 99:23–30

    Article  CAS  Google Scholar 

  28. Aswegen WV (2009) The kinetics and associated reactions of ruthenium (VIII). Dissertation (MS), Nelson Mandela Metropolitan University

  29. Igarashi H, Kato K, Takahashi T (1992) Absorption behaviour of gaseous ruthenium into water. Radiochim Acta 57:51–55

    CAS  Google Scholar 

  30. Fletcher JM, Jenkins IL, Lever FM, Martin FS, Powell AR, Todd R (1955) Nitrato and nitro complexes of nitrosylruthenium. J Inorg Nucl Chem 1:378–401

    Article  CAS  Google Scholar 

  31. Mun C, Cantrel L, Madic C (2007) Study of RuO4 decomposition in dry and moist air. Radiochim Acta 95:643–656

    Article  CAS  Google Scholar 

  32. Sakurai T, Hinatsu Y, Takahusi A, Fujisawa G (1985) Adsorption of ruthenium tetroxide on metal surfaces. J Phys Chem 89:1892–1896

    Article  CAS  Google Scholar 

  33. Mun C, Ehrhardt JJ, Lambert J, Madic C (2007) XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings. Appl Surf Sci. 253:7613–7621

    Article  CAS  Google Scholar 

  34. Holm J, Glanneskog H, Ekberg C (2009) Deposition of RuO4 on various surfaces in a nuclear reactor containment. J Nucl Mater 392:55–62

    Article  CAS  Google Scholar 

  35. Seddon EA, Seddon KR (1984) The chemistry of ruthenium, monograph 19. Elsevier, Amsterdam, p 51

    Google Scholar 

  36. Connick RE, Hurley CR (1952) Chemistry of Ru(VI), -(VII) and -(VIII). Reactions, oxidation potentials and spectra. J Am Chem Soc 74:5012–5015

    Article  CAS  Google Scholar 

  37. Mun C, Cantrel L, Madic C (2006) Review of literature on ruthenium behavior in nuclear power plant severe accidents. Nucl Technol 156:332–346

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. K. Sankaran, Head, Analytical Chemistry & Spectroscopy Section, Chemistry Group, IGCAR for his support in the analysis of Ru and to Shri U. Veeramani and T. Selvan, Reprocessing R&D Division for their help in the experimental work. Ms. Pravati Swain acknowledges gratefully, the financial support provided by Department of Atomic Energy in the form of Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mallika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, P., Annapoorani, S., Srinivasan, R. et al. Separation and recovery of ruthenium from nitric acid medium by electro-oxidation. J Radioanal Nucl Chem 303, 1865–1875 (2015). https://doi.org/10.1007/s10967-014-3638-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3638-4

Keywords

Navigation