Skip to main content
Log in

Determination of trace concentrations of transmuted stable nuclides in TMD detectors using PGAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The capability of prompt gamma-ray activation analysis (PGAA) for neutron fluence dosimetry by means of transmutation detectors is reported. The metallic foils of Ni, Au, Cu and Nb and the small piece of Ge crystal, which were irradiated at the LVR-15 reactor at Řež for several days, were selected for analysis by PGAA technique. Concentrations of transmuted stable nuclides in these foils were measured using the PGAA facility installed at the research reactor FRM II in Garching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Viererbl L, Lahodová Z, Klupák V, Sus F, Kučera J, K\(\mathring{{\rm u}}\)s P, Marek M (2011) Transmutation detectors. Nucl Instum Meth A 632:109–111

  2. Canella L, Kudějová P, Schulze R, Türler A, Jolie J (2011) Characterisation and optimisation of the new prompt gamma-ray activation analysis (PGAA) facility at FRMII. Nucl Instrum Meth A 636:108–113

    Article  CAS  Google Scholar 

  3. National Nuclear Data Center database: http://www.nndc.bnl.gov/capgam. Accessed 20 Nov 2013

  4. Basu SK, Mukherjee G, Sonzogni AA (2010) Nuclear Data Sheets 111: 2555 http://www.nndc.bnl.gov/ensdf/. Accessed 20 Nov 2013

  5. Bečvář F (1998) Simulation of \(\gamma \) cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities. Nucl Instrum Meth A417:434–449

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Technology Agency of the Czech Republic (projects TA01010237). This work was performed within the scope of research project FR-Tl1/397 of the Ministry of Industry and Trade. Some of the authors (I.T., L.V., Z.L. and V.K.) are very appreciative to the TU Munich for the hospitality during the PGAA experiments in Garching. The authors are grateful to J. Jolie from University of Cologne for lending \(^{198}\)HgS target material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tomandl.

Appendix

Appendix

The production of the mercury isotopes, \(^{198}\)Hg, \(^{199}\)Hg and \(^{200}\)Hg, in the process if irradiation of gold, \(^{197}\)Au is described by series of differential equations,

$$\begin{aligned} \frac{{\rm d}N_a(t)}{{\rm d}t}&= -\lambda _A N_a(t),\qquad \qquad \qquad \frac{{\rm d}N_b(t)}{{\rm d}t}=\lambda _A N_a(t) - \lambda _\beta N_b(t) , \nonumber \\ \frac{{\rm d}N_c(t)}{{\rm d}t}&= \lambda _B N_b(t) - \lambda _c N_c(t),\qquad \qquad \frac{{\rm d}N_{d}(t)}{{\rm d}t}=\lambda _b N_b(t) - \lambda _{d} N_{d}(t),\nonumber \\ \frac{{\rm d}N_e(t)}{{\rm d}t}&= \lambda _c N_c(t) + \lambda _{d} N_{d}(t)-\lambda _eN_e(t),\qquad \qquad \frac{{\rm d}N_f(t)}{{\rm d}t}=\lambda _e N_e(t),\nonumber \\ \lambda _\beta&= \lambda _B + \lambda _b \end{aligned}$$
(4)

where \(N_a(t)\), \(N_b(t)\), \(N_c(t)\), \(N_d(t)\), \(N_e(t)\) and \( N_f(t)\) are quantity of \(^{197}\)Au, \(^{198}\)Au, \(^{199}\)Au, \(^{198}\)Hg, \(^{199}\)Hg and \(^{200}\)Hg nuclei in time \(t\) , respectively, \(\lambda _A\), \(\lambda _B\), \(\lambda _D\) and \(\lambda _E\) are the reaction rates for \(^{197}\)Au,\(^{198}\)Au,\(^{198}\)Hg and \(^{199}\)Hg(n,\(\gamma \)) reactions, respectively, and \(\lambda _b\) and \(\lambda _c\) are decay constants for \(\beta ^-\)-decay of \(^{198}\)Au and \(^{199}\)Au, respectively. Solving these equations one will obtain the general solutions for quantity of nuclei during irradiation

$$\begin{aligned} N_a(t)&= N_a^0 e^{-\lambda _A t},\nonumber \\ N_b(t)&= N_a^0 \frac{\lambda _A}{\lambda _{\beta A}} (e^{-\lambda _A t}-e^{-\lambda _{\beta } t}),\nonumber \\ N_c(t)=& N_a^0 \lambda _A \lambda _B \left( \frac{e^{-\lambda _A t}}{\lambda _{cA}\lambda _{\beta A}} + \frac{e^{-\lambda _{\beta } t}}{\lambda _{c \beta }\lambda _{A \beta }} + \frac{e^{-\lambda _c t}}{\lambda _{Ac}\lambda _{\beta c}}\right) ,\nonumber \\ N_d(t)&= N_a^0 \lambda _A \lambda _b \left( \frac{e^{-\lambda _A t}}{\lambda _{DA}\lambda _{\beta A}} + \frac{e^{-\lambda _{\beta } t}}{\lambda _{D \beta }\lambda _{A \beta }} + \frac{e^{-\lambda _D t}}{\lambda _{AD}\lambda _{\beta D}}\right) ,\nonumber \\ N_e(t)=& N_a^0 \left[ \lambda _A \lambda _B \lambda _c \left( \frac{e^{-\lambda _A t}-e^{-\lambda _E t}}{\lambda _{cA} \lambda _{\beta A} \lambda _{EA}} + \frac{e^{-\lambda _\beta t}-e^{-\lambda _E t}}{\lambda _{c \beta } \lambda _{A \beta } \lambda _{E \beta }} + \frac{e^{-\lambda _c t}-e^{-\lambda _E t}}{\lambda _{Ac} \lambda _{\beta c} \lambda _{E c}}\right) \right. \nonumber \\&\left. +\lambda _A \lambda _b \lambda _D \left( \frac{e^{-\lambda _A t}-e^{-\lambda _E t}}{\lambda _{DA} \lambda _{\beta A} \lambda _{EA}} + \frac{e^{-\lambda _\beta t}-e^{-\lambda _E t}}{\lambda _{D \beta } \lambda _{A \beta } \lambda _{E \beta }} + \frac{e^{-\lambda _c t}-e^{-\lambda _E t}}{\lambda _{AD} \lambda _{\beta D} \lambda _{E D}}\right) \right] ,\nonumber \\ N_f(t)=& N_a^0 \lambda _E\nonumber \\&\left[ \lambda _A \lambda _B \lambda _c \left( \frac{\frac{1-e^{-\lambda _At}}{\lambda _A}-\frac{1-e^{-\lambda _Et}}{\lambda _E}}{\lambda _{cA}\lambda _{\beta A} \lambda _{EA}}+ \frac{\frac{1-e^{-\lambda _\beta t}}{\lambda _\beta }-\frac{1-e^{-\lambda _E t}}{\lambda _E}}{\lambda _{c \beta } \lambda _{A \beta } \lambda _{E \beta }}+ \frac{\frac{1-e^{-\lambda _c t}}{\lambda _c}-\frac{1-e^{-\lambda _E t}}{\lambda _E}}{\lambda _{Ac} \lambda _{\beta c} \lambda _{Ec}}\right) \right. \nonumber \\&\left. + \lambda _A \lambda _b \lambda _D \left( \frac{\frac{1-e^{-\lambda _A t}}{\lambda _A}-\frac{1-e^{-\lambda _E t}}{\lambda _E}}{\lambda _{DA}\lambda _{\beta A} \lambda _{EA}} + \frac{\frac{1-e^{-\lambda _\beta t}}{\lambda _\beta }-\frac{1-e^{-\lambda _E t}}{\lambda _E}}{\lambda _{D \beta } \lambda _{A \beta } \lambda _{E \beta }}+ \frac{\frac{1-e^{-\lambda _D t}}{\lambda _D}-\frac{1-e^{-\lambda _E t}}{\lambda _E}}{\lambda _{AD} \lambda _{\beta D} \lambda _{ED}}\right) \right] , \end{aligned}$$
(5)

where we have used general notation \(\lambda _{ij}=\lambda _i-\lambda _j\) and \(N_a^0\) is number of gold nuclei before irradiation. In time of analysis \(t_m\) long time after the stop of irradiation \(t_2\), i.e. \((t_m-t_2) \gg 1/\lambda _b\) and \((t_m-t_2) \gg 1/\lambda _c\), number of \(^{197}\)Au, \(^{198}\)Hg, \(^{199}\)Hg and \(^{200}\)Hg nuclides can be expressed as

$$\begin{aligned} N_{197Au}(t_m)&= N_a(t_2),\nonumber \\ N_{198Hg}(t_m)&= N_b(t_2)+N_d(t_2),\nonumber \\ N_{199Hg}(t_m)&= N_c(t_2)+N_e(t_2),\nonumber \\ N_{200Hg}(t_m)&= N_f(t_2). \end{aligned}$$
(6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomandl, I., Viererbl, L., Kudějová, P. et al. Determination of trace concentrations of transmuted stable nuclides in TMD detectors using PGAA. J Radioanal Nucl Chem 300, 1141–1149 (2014). https://doi.org/10.1007/s10967-014-3090-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3090-5

Keywords

Navigation