Skip to main content
Log in

Prompt gamma-ray neutron activation analysis of boron using Deuterium–Deuterium (D–D) neutron generator

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Prompt gamma-ray neutron activation analysis (PGNAA) is a nuclear analytical technique for the determination of trace and other elements in solid, liquid or gaseous samples. The method consists in observing gamma rays emitted by a sample during neutron irradiation. The PGNAA system was built using a moderated and shielded deuterium–deuterium (D–D) neutron generator. This facility has been developed to determine the chemical composition of materials. The neutron generator is composed of three major components: An RF-Induction Ion Source, the Secondary Electron Shroud, and the Diode Accelerator Structure and Target. The generator produces monoenergetic neutrons (2.5 MeV) with a yield of 1010 n/s using 25–50 mA of beam current and 125 kV of acceleration voltage. Prompt γ-ray neutron activation analysis of 10B concentrations in Si and SiO2 matrices was carried out using a germanium detector (HPGe) and the results obtained are compared with a PGNAA system using a NaI detector. Neutron flux and energy distribution from D–D neutron generator at the sample position was calculated using Monte Carlo simulation. The interaction properties of neutrons in a Germanium detector have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ellis KJ (1993) In-vivo activation analysis: present and future prospects. J Radioanal Nucl Chem 169:291–300

    Article  CAS  Google Scholar 

  2. Spyrou NM (1999) Neutron activation analysis challenges: problems and applications in biomedical and other areas. J Radioanal Nucl Chem 239:59–70

    Article  CAS  Google Scholar 

  3. Kudějová P (2005) On the construction of a new instrument for cold-neutron prompt gamma-ray activation analysis at the FRM-II. J Radioanal Nucl Chem 265:221–227

    Article  Google Scholar 

  4. Park YJ, Song BC, Chowdhury MI, Jee KY (2004) A neutron induced prompt gamma-ray spectroscopy system using a 252Cf neutron source for quantitative analysis of aqueous samples. J Radioanal Nucl Chem 260:585–594

    Article  CAS  Google Scholar 

  5. Turhan Ş, Yücel H, Demirbaş A (2004) Prompt gamma neutron activation analysis of boron with a 241Am-Be neutron source. J Radioanal Nucl Chem 262:661–664

    Article  CAS  Google Scholar 

  6. Shypailo RJ, Ellis KJ (2008) Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection. J Radioanal Nucl Chem 276:71–77

    Article  CAS  Google Scholar 

  7. Oliveira C, Salgado J, Carvalho FG (1997) Optimization of PGNAA instrument design for cement raw materials using the MCNP code. J Radioanal Nucl Chem 216:191–198

    Article  CAS  Google Scholar 

  8. Jiggins AH, Habbani FI (1976) Prompt gamma-ray analysis using 329 MeV neutron inelastic scattering. Int Appl Radiat Isot 27:689–693

    Article  CAS  Google Scholar 

  9. Acharya R (2009) Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents. J Radioanal Nucl Chem 281:291–294

    Article  CAS  Google Scholar 

  10. Baechler S, Kudejovac P, Joliec J, Schenkera JL, Strittd N (2002) Prompt gamma-ray activation analysis for the determination of boron in aqueous solutions. Nucl Instrum Methods A 488:410–418

    Article  CAS  Google Scholar 

  11. Hamid A (2012) K0-prompt gamma ray activation analysis for estimation of boron and cadmium in aqueous solutions. J Radioanal Nucl Chem 292:229–236

    Article  CAS  Google Scholar 

  12. Grazman BL, Schweikert EA (2005) A brief review of the determination of cadmium by prompt gamma-ray neutron activation analysis. J Radioanal Nucl Chem 152:497–506

    Article  Google Scholar 

  13. Grinyer J, Byun SH, Chettle DR (2005) In vivo prompt gamma neutron activation analysis of cadmium in the kidney and liver. Appl Radiat Isot 63:475–479

    Article  CAS  Google Scholar 

  14. Kobayashi T, Kanda K (1983) Microanalysis system of ppm-order 10B concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl Instrum Methods Phys Res 204:525–531

    Article  CAS  Google Scholar 

  15. Anderson DL, Cunningham WC, Mackey EA (1990) Determination of boron in food and biological reference materials by neutron capture prompt-γ activation. Fresenius J Anal Chem 338:554–558

    Article  CAS  Google Scholar 

  16. Probst TU (1999) Methods for boron analysis in boron neutron capture therapy (BNCT). Fresenius J Anal Chem 364(5):391–403

    Article  CAS  Google Scholar 

  17. Firestone RB, Shirley VS (1996) Table of isotopes, 8th edn. Wiley, New York

    Google Scholar 

  18. Oliveira C, Salgado J, Goncalves IF, Carvalho FG (1993) Prompt gamma-ray neutron activation analysis of cement raw material. J Nucl Geophys 7:431–443

    CAS  Google Scholar 

  19. Isenhour TL, Morrison GH (1966) Determination of boron by thermal neutron activation analysis using a modulation technique. Anal Chem 38:167

    Article  CAS  Google Scholar 

  20. Bergaoui K, Reguigui N, Gary CK, Cremer JT, Vainionpaa JH, Piestrup MA (2014) Design, testing and optimization of a neutron radiography system based on a deuterium-deuterium (D-D) neutron generator. J Radioanal Nucl Chem 299:41–51

    Article  CAS  Google Scholar 

  21. Marshall JH, Zumberge JF (1989) On-line measurements of bulk coal using prompt gamma neutron activation analysis. Nuclear Geophys 3:445

    CAS  Google Scholar 

  22. Ellis DV (1987) Well logging for earth scientists. Elsevier, New York

    Google Scholar 

  23. Adelphi Technology Inc. http://www.adelphitech.com/

  24. Reijonen J (2007) Compact neutron generators for medical, Homeland Security and planetary exploration. Nucl Instr Methods B: 261–272

  25. Popov V, Degtiarenko P, Musatov I (2010) New detector for use in fast neutron radiography. In: 12th International workshop on radiation imaging defectors, Robinson College, Cambridge UK. IOP Published for SISSA

  26. Goorley T, James M, Booth T, Brown F, Bull J, Cox L, Durkee J, Elson J, Fensin M, Forster RA, Hendricks J, Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik S, McKinney G, Pelowitz D, Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T (2013) Initial MCNP6 release overview-MCNP6 version 1.0, LAUR-13-22934

  27. Carron NJ (2007) An introduction to the passage of energetic particles through matter. Taylor & Francis, p 308

  28. Anno JN (1984) Notes on radiation effects on materials. Hemisphere Publishing, Washington. ISBN 3540135596

  29. Koenenl M, Bruckner J, Fabian U, Kruse H (1996) Analysis of radiation damaged HPGe detectors with a new algorithm. IEEE Trans Nucl Sci 43(3):1570–1575

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by (IAEA TUN2003 project) “Installation of neutron activation analysis laboratory based on a neutron generator”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bergaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergaoui, K., Reguigui, N., Gary, C.K. et al. Prompt gamma-ray neutron activation analysis of boron using Deuterium–Deuterium (D–D) neutron generator. J Radioanal Nucl Chem 303, 115–121 (2015). https://doi.org/10.1007/s10967-014-3298-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3298-4

Keywords

Navigation