Skip to main content
Log in

Investigations of actinides in the context of final disposal of high-level radioactive waste: trivalent actinides in aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV–Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0–2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. OECD, NEA (1999) Status and assessment report on actinide and fission product partitioning and transmutation, Paris

  2. Barnard R, Bullock JI, Gellatly BI, Larkworthy LF (1973) J Chem Soc-Dalton Trans 6:604–607

    Article  Google Scholar 

  3. Butler RJ, Sinkov S, Renshaw JC, Collison D, Livens FR, Taylor RJ, Choppin GR (2000) ATALANTE2000, October 24

  4. Carrott MJ, Fox OD, LeGurun G, Jones CJ, Mason C, Taylor RJ, Andrieux FPL, Boxall C (2008) Radiochim Acta 96:333–344

    Article  CAS  Google Scholar 

  5. Cohen D, Carnall WT (1960) J Inorg Nucl Chem 64:1933–1936

    CAS  Google Scholar 

  6. Cohen D (1961) J Inorg Nucl Chem 18:207–210

    Article  CAS  Google Scholar 

  7. Droczdzynski J (1978) J Inorg Nucl Chem 40:319–323

    Article  Google Scholar 

  8. Gel’man AD, Mefod’eva MP (1958) Sov J Energy 4:361–364

    Google Scholar 

  9. Hagan PG, Cleveland JM (1966) J Inorg Nucl Chem 28:2905

    Article  CAS  Google Scholar 

  10. Heal HG (1946) Nature 157:225

    Article  CAS  Google Scholar 

  11. Heal HG (1949) Trans Faraday Soc 45:1–11

    Article  CAS  Google Scholar 

  12. Kennedy JH (1960) Anal Chem 32:150–152

    Article  CAS  Google Scholar 

  13. Kritchevsky ES, Hindman JC (1949) J Am Chem Soc 71:2096–2102

    Article  CAS  Google Scholar 

  14. Krot NN, Mefod’eva MP (1974) Russ Chem Bull 23:2052–2054

    Article  Google Scholar 

  15. Kulyukhin SA, Mikheev NB, Kamenskaya AN, Konovalova NA, Rumer IA (2006) Radiochem 48:535–551

    Article  CAS  Google Scholar 

  16. Mao JJ, Zhou ZM, Qin QZ (1991) J Radioanal Nucl Chem 147:277–285

    Article  CAS  Google Scholar 

  17. Peretrukhin VF, Krot NN, Gel’man AD (1970) Sov Radiochem 12:81–84

    Google Scholar 

  18. Peretrukhin VF, Krot NN, Gel’man AD (1970) Sov Radiochem 12:85–88

    Google Scholar 

  19. Sato A (1967) Bull Chem Soc Jap 40:2107–2109

    Article  CAS  Google Scholar 

  20. Jun MJ, Zuming Z, Qizong Q (1991) Radioanal Nucl Chem 147:227–231

    Google Scholar 

  21. Shiloh M, Marcus Y (1965) Israel J Chem 3:123–125

    Article  CAS  Google Scholar 

  22. Shiloh M, Marcus Y (1966) J Inorg Nucl Chem 28:2725–2732

    Article  CAS  Google Scholar 

  23. Yusov A, Shilov V, Peretrukhin V, Fedoseev A (2007) Radiochemistry 49:1–13

    Article  CAS  Google Scholar 

  24. Antonio MR, Soderholm L, Williams CW, Blaudeau JP, Bursten BE (2001) Radiochim Acta 89:17–25

    Article  CAS  Google Scholar 

  25. Geist A, Banik NL (2013) Private communication

  26. Gong CMS, Lukens WW, Poineau F, Czerwinski KR (2008) Inorg Chem 47:6674–6680

    Article  CAS  Google Scholar 

  27. Taylor RJ, May I (1999) Czech J Phys 49:617

    Article  CAS  Google Scholar 

  28. Yarbro SL, Schreiber SB, Ortiz EM, Ames RL (1998) J Radioanal Nucl Chem 235:21–24

    Article  CAS  Google Scholar 

  29. Rothe J, Denecke MA, Dardenne K, Fanghänel Th (2006) Radiochim Acta 94:691–696

    Article  CAS  Google Scholar 

  30. Bearden JA, Burr AF (1967) Rev Mod Phys 39:125–142

    Article  CAS  Google Scholar 

  31. Ravel B, Newville M (2005) J Synchr Rad 12:537–541

    Article  CAS  Google Scholar 

  32. Budanov VV (2002) Russ J Coord Chem 28:294–300

    Google Scholar 

  33. Brendebach B, Banik NL, Marquardt CM, Denecke MA, Geckeis H (2009) Radiochim Acta 12:701–708

    Google Scholar 

  34. Nästren C, Jardin R, Somers J, Walter M, Brendebach B (2009) J Solid State Chem 182:1–7

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly financed by The Federal Ministry of Economics and Technology (Germany) and the European Network of Excellence in Actinide Science (ACTINET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhu L. Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banik, N.L., Brendebach, B. & Marquardt, C.M. Investigations of actinides in the context of final disposal of high-level radioactive waste: trivalent actinides in aqueous solution. J Radioanal Nucl Chem 300, 177–183 (2014). https://doi.org/10.1007/s10967-014-3010-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3010-8

Keywords

Navigation