Skip to main content
Log in

Measurement of isomeric yield ratios of the 104m,g,106m,gAg in the 45- and 55-MeV bremsstrahlung induced reactions of natural silver

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The isomeric yield ratios for the natAg(γ,xn)104m,g,106m,gAg reactions with the end-point bremsstrahlung energies of 45- and 55-MeV have been determined by the off-line γ-ray spectrometric technique using 100 MeV electron linac at Pohang accelerator laboratory, Korea. The present data were compared with literature data in comparable compound nucleus from the natAg(γ,xn), natPd(p,xn), and 103Rh(α,xn) reactions to examine the effects of an excitation energy and an input angular momentum. It is observed that the isomeric yield ratios of 104,106Ag in natAg(γ,xn), natPd(p,xn) and 103Rh(α,xn) reactions increase with the end-point bremsstrahlung energy, proton and alpha energy, which indicate the role of excitation energy. It is also found that for the similar compound nucleus at same excitation energy, the isomeric yield ratio of 104m,gAg is higher in the natPd(p,xn) and 103Rh(α,xn) reactions than those in natAg(γ,xn) reaction, which indicate the effect of an input angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wagemans C (1990) The nuclear fission process. CRC, London

    Google Scholar 

  2. Vandenbosch R, Huizenga JR (1973) Nuclear fission. Academic, New York

    Google Scholar 

  3. Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305

    Article  CAS  Google Scholar 

  4. Vandenbosch R, Huizenga JR (1960) Phys Rev 120:1313

    Article  CAS  Google Scholar 

  5. Haller IB, Rudstam G (1961) J Inorg Nucl Chem 19:1

    Article  CAS  Google Scholar 

  6. Bishop CT, Huizenga JR, Hummel JP (1964) Phys Rev 135:B401

    Article  Google Scholar 

  7. Blann M (1975) Ann Rev Nucl Sci 25:123

    Article  CAS  Google Scholar 

  8. Qaim SM (1972) Nucl Phys A 185:614

    Article  CAS  Google Scholar 

  9. Krupa JC (1976) J Inorg Nucl Chem 38:965

    Article  CAS  Google Scholar 

  10. Molla NI, Qaim SM (1977) Nucl Phys A 283:269

    Article  Google Scholar 

  11. Newton GWA, Robinson VJ, Shaw EM (1981) J Inorg Nucl Chem 43:2227

    Article  CAS  Google Scholar 

  12. Mannan A, Qaim SM (1988) Phys Rev C 38:630

    Article  CAS  Google Scholar 

  13. Qaim SM, Mushtaq A, Uhl M (1988) Phys Rev C 38:645

    Article  CAS  Google Scholar 

  14. Qaim SM, IbnMajah M, Woelfle R, Strohmaier B (1990) Phys Rev C 42:363

    Article  CAS  Google Scholar 

  15. Cserpak CF, Sudar S, Csikai J, Qaim SM (1994) Phys Rev C 49:1525

    Article  CAS  Google Scholar 

  16. Guin R, Saha SK, Prakash S, Uhl M (1992) Phys Rev C 46:250

    Article  CAS  Google Scholar 

  17. Birn IG, Strohmaier B, Freiesleben H, Qaim SM (1995) Phys Rev C 52:2546

    Article  CAS  Google Scholar 

  18. Sudar S, Qaim SM (1996) Phys Rev C 53:2885

    Article  CAS  Google Scholar 

  19. Strohmaier B, Fassbeder M, Qaim SM (1997) Phys Rev C 56:2654

    Article  CAS  Google Scholar 

  20. Nesaraja CD, Sudar S, Qaim SM (2003) Phys Rev C 68:024603

    Article  Google Scholar 

  21. Sudar S, Qaim SM (2006) Phys Rev C 73:034613

    Article  Google Scholar 

  22. Qaim SM, Sudar S, Fessler A (2005) Radiochim Acta 93:503

    CAS  Google Scholar 

  23. Uddin MS, Sudar S, Qaim SM (2011) Phys Rev C 84:024605

    Article  Google Scholar 

  24. Gholami M, Kildir M, Behkami AN (2007) Phys Rev C 75:044308

    Article  Google Scholar 

  25. Thiep TD, An TT, Cuong PV, Vinh NT, Hue BM, Belov AG, Maslov OD (2014) J Radioanal Nucl Chem 299:477

    Article  CAS  Google Scholar 

  26. Kim KS, Rahman MS, Lee MW, Kim GN, Pham DK, Nguyen VD, Cho MH, Ko IS, Namkung W, Naik H, Ro TI (2011) J Radioanal Nucl Chem 287:869

    Article  CAS  Google Scholar 

  27. Bezshyyko OA, Vodin AN, Golinka-Bezshyyko LO, Dovbnya AN, Kadenko IN, Kivernyk AO, Kovalenko AA, Kushnir VA, Levon AI, Mitrochenko VV, Olejnik SM, Tuller GE (2011) Bull Russ Acad Sci Phys 75:941

    Article  CAS  Google Scholar 

  28. Mazur VM, Symochko DM, Bigan ZM, Poltorzhytska TV (2011) Int J Mod Phys E 20:2329

    Article  CAS  Google Scholar 

  29. Palvanov SR, Rakhmonov Z, Kajumov M, Mamayusupova MI, Zhuraev O (2011) Bull Russ Acad Sci Phys 75:222

    Article  CAS  Google Scholar 

  30. Thiep TD, An TT, Khai NT, Cuong PV, Vinh NT (2010) J Radioanal Nucl Chem 286:161

    Article  Google Scholar 

  31. Bezshyyko OA, Vodin AN, Golinka-Bezshyyko LA, Dovbnya AN, Kadenko IN, Kulakov IS, Kushnir VA, Mitrochenko VV, Oleinik SN, Tuller GE (2009) Bull Russ Acad Sci Phys 73:1461

    Article  Google Scholar 

  32. Thiep TD, An TT, Khai NT, Vinh NT, Cuong PV, Belov AG, Maslov OD (2009) Phys Part Nucl Lett 6:126

    Article  CAS  Google Scholar 

  33. Thiep TD, An TT, Khai NT, Vinh NT, Cuong PV, Belov AG, Maslov OD, My TTT (2006) Phys Part Nucl Lett 3:223

    Article  CAS  Google Scholar 

  34. Behkami AN, Soltani M (2005) Commun Theor Phys 43:709

    Article  CAS  Google Scholar 

  35. Palvanov SR, Tadzhibaev GY, Ruzimov ShM (2005) At Energiya 98:238

    Google Scholar 

  36. Demekhina NA, Danagulyan AS, Karapetyan GS (2002) Phys At Nucl 65:365

    Article  CAS  Google Scholar 

  37. Palvanov SR, Razhabov O (1999) At Energiya 87:75

    Google Scholar 

  38. Kolev D (1998) Appl Radiat Isot 49:989

    Article  CAS  Google Scholar 

  39. Kolev D, Dobreva E, Nenov N, Todorov V (1995) Nucl Instrum Methods A 356:390

    Article  CAS  Google Scholar 

  40. Davydov MG, Magera VG, Trukhov AV (1987) At Energiya 62:236

    CAS  Google Scholar 

  41. Kato T, Voigt AF (1970) J Radioanal Chem 4:325

    Article  CAS  Google Scholar 

  42. Walters WB, Hummel JP (1966) Phys Rev 150:867

    Article  CAS  Google Scholar 

  43. Fuchs H, Kosiek R, Meyer-Berkhout U (1962) Z Phys 166:590

    Article  CAS  Google Scholar 

  44. Kalcheva S, Koonen E (2007) Analytical, numerical and experimental methods used for the reactivity control of the reactor BR2, Open Report of the Belgian Nuclear Research Center, SCK·CEN-BLG-1054

  45. Kim GN, Ahmed H, Machrafi R, Son D, Skoy V, Lee YS, Kang H, Cho MH, Ko IS, Namkung W (2003) J Korean Phys Soc 42:479

    Google Scholar 

  46. Rahman MS, Kim KS, Lee MW, Kim GN, Oh YD, Lee HS, Cho MH, Ko IS, Namkung W, Nguyen VD, Pham DK, Kim TT, Ro TI (2009) Nucl Instrum Methods B 267:3511

    Article  CAS  Google Scholar 

  47. Nguyen VD, Pham DK, Kim TT, Le TS, Rahman MS, Kim KS, Lee MW, Kim GN, Oh YD, Lee HS, Cho MH, Ko IS, Namkung W (2008) Nucl Instrum Methods B 266:5080

    Article  CAS  Google Scholar 

  48. Rahman MS, Kim KS, Lee MW, Kim GN, Oh YD, Lee HS, Cho MH, Ko IS, Namkung W, Nguyen VD, Pham DK, Kim TT, Ro TI (2010) Nucl Instrum Methods B 268:13

    Article  CAS  Google Scholar 

  49. Firestone RB, Baglin CM, Chu FSY (1998) Table of isotopes, 8th edn, Update on CD-ROM. Wiley, New York

  50. Koning AJ, Hilaire S, Duijvestijn MC (2008) TALYS-1.0. In: Proceedings of the international conference on nuclear data for science and technology, EDP Science p 211. http://www.talys.eu/download-talys/

  51. Pelowitz DB, Durkee JW, Elson JS, Fensin ML, Hendricks JS, James MR, Johns RC, McKinney GW, Mashnik SG, Verbeke JM, Waters LS, Wilcox TA (2011) MCNPX 2.7.E Extensions LA-UR-11-01502

  52. Khandaker MU, Kim KS, Kim GN (2012) Nucl Instrum Methods B 274:148

    Article  CAS  Google Scholar 

  53. Thierens H, De Frenne D, Jacobs E, De Clercq A, D’hondt P, Deruytter AJ (1976) Phys Rev C 14:1058

    Article  CAS  Google Scholar 

  54. Naik H, Singh S, Goswami A, Manchanda VK, Kim GN, Kim KS, Lee MW, Rahman MdS, Raj D, Ganesan S, Suryanarayana SV, Cho M-H, Namkung W (2011) Nucl Instrum Methods B 269:1417

    Google Scholar 

  55. Tuli JK (2011) Nuclear Wallet Cards, National Nuclear Data Center, Brookhaven National Laboratory, pp 49–84

Download references

Acknowledgments

The authors are thankful to the staff of electron linac at Pohang Accelerator Laboratory (PAL), Korea for the excellent operation and their support to carry out the experiments. This research partly was supported by the National Research Foundation of Korea (NRF) through a grant provided by the Ministry of Science, ICT & Future Planing (2010-0021375), by the Brain Pool Program (Project No. 122S-1-3-0436) of Kyungpook National University, and by the Institutional Activity Program of Korea Atomic Energy Research Institute (KAERI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatari, M., Kim, G., Naik, H. et al. Measurement of isomeric yield ratios of the 104m,g,106m,gAg in the 45- and 55-MeV bremsstrahlung induced reactions of natural silver. J Radioanal Nucl Chem 300, 269–275 (2014). https://doi.org/10.1007/s10967-014-3008-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3008-2

Keywords

Navigation