Skip to main content
Log in

Isomeric yield ratios of 148Pm from the natSm(γ, x) and the natNd(p, xn) reactions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The independent isomeric yield ratios of 148Pm from the natSm(γ, x) reaction at the end-point bremsstrahlung energy of 45–64 MeV have been determined using an off-line γ-ray spectrometric technique at the 100 MeV electron linac of Pohang accelerator laboratory, Pohang, Korea. We also have determined the isomeric yield ratios of 148Pm from the natNd(p,xn) reactions in the proton energy of 5.08–44.72 MeV by a stacked-foil activation and an off-line γ-ray spectrometric techniques at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences, Korea. The determined isomeric yield ratios of 148Pm were compared with literature data and theoretical values estimated by the TALYS 1.4. The present data along with the similar data from literature at other energies shows that the isomeric yield ratio of 148Pm increases with the excitation energy both in the natSm(γ, x) and the natNd(p, xn) reactions. The isomeric yield ratios of 148Pm from the natNd(p, xn) reactions are always higher than those from the natSm(γ, x) reactions at the same excitation energy, which indicate the role of input angular momentum besides excitation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wagemans C (1990) The nuclear fission process. CRC, London

    Google Scholar 

  2. Vandenbosch R, Huizenga JR (1973) Nuclear fission. Academic, New York

    Google Scholar 

  3. Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305

    Article  CAS  Google Scholar 

  4. Vandenbosch R, Huizenga JR (1960) Phys Rev 120:1313

    Article  CAS  Google Scholar 

  5. Blann M (1975) Ann Rev Nucl Sci 25:123

    Article  CAS  Google Scholar 

  6. Chadwick MB, Oblozinsky P, Herman M, Greene NM, McKnight RD, Smith DL, Young PG, MacFarlane RE, Hale GM, Frankle SC, Kahler AC, Kawano T, Little RC, Madland DG, Moller P, Mosteller RD, Page PR, Talou P, Trellue H, White MC, Wilson WB, Arcilla R, Dunford CL, Mughabghab SF, Pritychenko B, Rochman D, Sonzogni AA, Lubitz CR, Trumbull TH, Weinman JP, Brown DA, Cullen DE, Heinrichs DP, McNabb DP, Derrien H, Dunn ME, Larson NM, Leal LC, Carson AD, Block RC, Briggs JB, Cheng ET, Huria HC, Zerkle ML, Kozier KS, Courcelle A, Pronyaev V, van der Marck SC (2006) Nucl Data Sheets 107:2931

    Article  CAS  Google Scholar 

  7. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Otuka N, Katakura J (2011) J Nucl Sci Technol 48:1

    Article  CAS  Google Scholar 

  8. Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellett MA, Mills RW, Nordborg C, Pescarini M, Rugama Y, Rullhusen P (2011) J Korean Phys Soc 59:1057

    Article  Google Scholar 

  9. Ge ZG, Zhuang YX, Liu TJ, Zhang JS, Wu HC, Zhao ZX, Xia HH (2011) J Korean Phys Soc 59:1052

    Article  CAS  Google Scholar 

  10. IAEA-EXFOR Database. http://www-nds.iaea.org/exfor. Version of November 20, 2013

  11. Haustein PE, Voigt AF (1971) J Inorg Nucl Chem 33:289

    Article  CAS  Google Scholar 

  12. Hoang DL, Tran DT, Truong TA, Phan A (1987) Bulgarian J Phys 14:152

    Google Scholar 

  13. Davydov MG, Magera VG, Trukhov AV (1987) At Energ 62:236

    CAS  Google Scholar 

  14. Palvanov SR, Razhabov O (1999) At Energ 87:533

    Article  CAS  Google Scholar 

  15. Mazur VM, Zheltonozhsky VA, Bigan ZM (1995) Yad Fiz 58:970

    CAS  Google Scholar 

  16. Kolev D (1998) Appl Radiat Isot 49:989

    Article  CAS  Google Scholar 

  17. Belov AG, Gangrsky YuP, Tonchev AP, Balabanov NP (1995) Yad Fiz 59:389

  18. Belov AG, Gangrsky YuP, Melnikova LM, Ponomarev VYu, Tsoneva N, Stoyanov Ch, Tonchev AP, Balabanov N (2001) Yad Fiz 64:1987

  19. Palvanov SR, Mamayusupova MI (2007) At Energy 103:827

    Article  CAS  Google Scholar 

  20. Palvanov SR, Rakhmonov Zh, Kajumov M, Mamayusupova MI, Zhuraev O (2011) Bull Russ Acad Sci Phys 75:222

    Article  CAS  Google Scholar 

  21. Curzio G, Sona P (1968) IL Nuovo Cimento 54:319

    Article  CAS  Google Scholar 

  22. Grissom JT, Koehler DR, Alford WL (1966) Phys Rev 142:725

    Article  CAS  Google Scholar 

  23. Prasad PR, Rao JR, Kondaiah E (1969) Nucl Phys A 125:57

    Article  CAS  Google Scholar 

  24. Kong X, Wang Y, Yang J (1998) Appl Radiat Isot 49:1529

    Article  CAS  Google Scholar 

  25. Filatenkov AA, Chuvaev SV, Aksenov VN, Jakovlev VA (1999) Khlopin Radium Institute Report RI-252

  26. Aumann DC, Gükel W (1977) Phys Rev C 16:160

    Article  CAS  Google Scholar 

  27. Steyn GF, Vermeulen C, Nortier FM, Szelecsényi F, Kovács Z, Qaim SM (2006) Nucl Instrum Methods B 252:149

    Article  CAS  Google Scholar 

  28. Glebov NK, Tulinov AF, Khodyrev VA, Chuvilskaja TV, Shavtvalov LJ, Shirokova AA (1991) Bull Russ Acad Sci Phys 55:133

    Google Scholar 

  29. Hilgers K, Sudár S, Qaim SM (2007) Phys Rev C 76:064601

    Article  Google Scholar 

  30. Lebeda O, Lozza V, Schrock P, Stursa J, Zuber K (2012) Phys Rev C 85:014602

    Article  Google Scholar 

  31. Koning AJ, Hilaire S, Duijvestijn MC (2007) TALYS-1.4. In: Proceedings of the international conference on nuclear data for science and technology, Nice, France. Bersillon O, Gunsing F, Bauge E, Jacqmin R, Leray S (eds) 2008 EDP Sciences, Paris, pp 211–214

  32. Kim GN, Ahmed H, Machrafi R, Son D, Skoy V, Lee YS, Kang H, Cho M-H, Ko IS, Namkung W (2003) J Korean Phys Soc 43:479

    CAS  Google Scholar 

  33. Nguyen VD, Pham DK, Tran DT, Phung VD, Lee YS, Lee HS, Cho MH, Ko IS, Namkung W, Meaze AKMMH, Devan K, Kim GN (2006) J Korean Phys Soc 48:382

    CAS  Google Scholar 

  34. Rahman MS, Kim KS, Lee MW, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W, Nguyen VD, Pham DK, Kim TT, Ro TI (2010) J Radioanal Nucl Chem 283:519

    Article  CAS  Google Scholar 

  35. Khandaker MU, Meaze AKMH, Kim K, Son D, Kim GN (2006) J Korean Phys Soc 48:821

    CAS  Google Scholar 

  36. Uddin MS, Khandaker MU, Kim KS, Lee YS, Lee MW, Kim GN (2008) Nucl Instrum Methods B 266:13

    Article  CAS  Google Scholar 

  37. Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Cho YS, Lee YO (2009) Appl Radiat Isot 67:1341

    Article  CAS  Google Scholar 

  38. Ziegler JF, Zeiler MD, Biersack JP (2008) SRIM-2008.04. http://www.srim.org/

  39. Thierens H, De Frenne D, Jacobs E, De Clercq A, D’hondt P, Deruytter AJ (1976) Phys Rev C 14:1058

    Article  CAS  Google Scholar 

  40. John SH, Gregg WM, Michael LF, Michael RJ, Russell CJ, Joe WD, Joshua PF, Denise BP, Laurie SW, William MJ (2008) MCNPX extension Version 2.6.0, LA-UR-08-2216

  41. Tuli JK (2011) Nuclear wallet cards. http://www.nndc.bnl.gov/

  42. Firestone RB, Ekstrom LP (2004) Table of radioactive isotopes, version 2.1 http://ie.lbl.gov/toi

  43. Blachot J, Fiche C (1981) Ann Phys Suppl 6:3

    CAS  Google Scholar 

  44. Cavinato M, Fabrici E, Gadioli E, Erba EG, Vergani P, Crippa M, Colombo G, Redaelli I, Ripamonti M (1995) Phys Rev C 52:2577

    Article  CAS  Google Scholar 

  45. Haller IB, Rudstam G (1961) J Inorg Nucl Chem 19:1

    Article  CAS  Google Scholar 

  46. Vanska R, Rieppo R (1981) Nucl Instrum Methods 179:525

  47. Bhat MR (2000) Nucl Data Sheets 89:797

  48. Debertin K, Schötzig U (1979) Nucl Instrum Methods 158:471

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the staff of electron linac at Pohang Accelerator Laboratory (PAL) and the MC-50 Cyclotron in the Korea Institute of Radiological and Medical Science (KIRAMS) for the excellent operation and their support to carry out the experiments. This research partly was supported by the National Research Foundation of Korea through a grant provided by the Korean Ministry of Science, ICT and Future Planning (MSIP) (NRF-2013R1A2A2A01067340), by the Institutional Activity Program of Korea Atomic Energy Research Institute (KAERI), and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.04-2012.21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SC., Kim, G., Zaman, M. et al. Isomeric yield ratios of 148Pm from the natSm(γ, x) and the natNd(p, xn) reactions. J Radioanal Nucl Chem 302, 467–476 (2014). https://doi.org/10.1007/s10967-014-3284-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3284-x

Keywords

Navigation