Skip to main content
Log in

Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The first purpose of this research was improvement of sensitivity of the normoxic acrylamide-based polymer gel dosimeter. Another aim of this study was investigation of the absorbance of the irradiated gels as well as their relaxation rate variations. In addition, a new optical parameter, area under the absorbance spectrum (AUS), was investigated. Sensitivity improvement was performed by adding glucose and urea to the previously reported acrylamide-based polymer gel formulation and new formulation was named PAGATUG. The formulation which gives the nearest tissue elemental composition has been determined to be 3 % bis, 3 % AA, 5 % gelatine, 5 mM THPC, 0.01 mM HQ, 8.5 % glucose, and 3 % urea. The differences in electron density, number of electrons per gram and effective atomic number of PAGATUG gel were no more than 1, 0.5, and 0.8 % of the corresponding values for the soft tissue respectively. PAGATUG gels were irradiated by 60Co radiotherapy unit photon beams with different doses and imaged using a 1.5T Siemens Avanto MRI scanner for different post irradiation times. In addition, the absorbance of the irradiated gels were evaluated using a double beam spectrophotometer. We found that the R 2-sensitivity of polymer gel was improved by a factor of more than 2.6 in respect of the previously reported PAGAT polymer gel. Dose–absorbance sensitivity was obtained as 0.89 Au Gy−1 and the results showed more stable response in respect of R 2 investigation. An AUS-sensitivity of 107.7 Au nm Gy−1 indicated to steep response variation. This read out parameter showed an acceptable linearity and dynamic dose range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gore JC, Kang YS, Schulz RJ (1984) Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29(10):1189–1197

    Article  CAS  Google Scholar 

  2. Olsson LE, Wesuin BA, Franssons A, Nordellf B (1992) Diffusion of ferric ions in agarose dosimeter gels. Phys Med Biol 37(12):2243–2252

    Article  CAS  Google Scholar 

  3. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258

    Article  CAS  Google Scholar 

  4. Vergote K, De Deene Y, Duthoy W, Gersem WD, Neve WD, Achten E, Wagter CD (2004) Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment. Phys Med Biol 49:287–305

    Article  CAS  Google Scholar 

  5. Crescenti RA, Scheib SG, Schneider U, Gianolini S (2007) Introducing gel dosimetry in a clinical environment: customization of polymer gel composition and magnetic resonance imaging parameters used for 3D dose verifications in radiosurgery and intensity modulated radiotherapy. Med Phys 34(4):1286–1297

    Article  Google Scholar 

  6. Papagiannis P, Karaiskos P, Kozicki M, Rosiak JM, Sakelliou L, Sandilos P, Seimenis Torrens M (2005) Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI. Phys Med Biol 50:1979–1990

    Article  CAS  Google Scholar 

  7. Gustavsson H, Back SAJ, Medin J, Grusell E, Olsson LE (2004) Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Phys Med Biol 49:3847–3855

    Article  CAS  Google Scholar 

  8. Zeidan OA, Sriprisan SI, Lopatiuk-Tirpak O, Kupelian PA, Meeks SL, Anderson MD, Hsi WC, Li Z, Palta JR, Maryanski MJ (2010) Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Med Phys 37(5):2145–2152

    Article  CAS  Google Scholar 

  9. Ramm U, Weber U, Bock M, Kramer M, Bankamp A, Damrau M, Thilmann C, Böttcher HD, Schad LR, Kraft G (2000) Three-dimensional BANGTM gel dosimetry in conformal carbon ion radiotherapy. Phys Med Biol 45:N95–N102

    Article  CAS  Google Scholar 

  10. Uusi-Simola J, Savolainen S, Kangasmaki A, Heikkinen S (2003) Study of the relative dose-response of BANG-3R polymer gel dosimeters in epithermal neutron irradiation. Phys Med Biol 48:2895–2906

    Article  CAS  Google Scholar 

  11. Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46(12):3105–3113

    Article  CAS  Google Scholar 

  12. Senden RJ, Jean PD, McAuley KB, Schreiner LJ (2006) Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose-response using different monomers. Phys Med Biol 51:3301–3314

    Article  CAS  Google Scholar 

  13. Hsieh B-T, Chiang C-T, Hung P-H, Kao C-H, Liang J-A (2011) Preliminary investigation of a new type of propylene based gel dosimeter (DEMBIG). J Radioanal Nucl Chem 288:799–803

    Article  CAS  Google Scholar 

  14. Chiang C-T, Chang Y-J, Huang S-K, Jang C-J, Hsieh B-T (2011) Optimal composition of a new polymer gel dosimeter-DEMBIG. J Radioanal Nucl Chem 290:59–65

    Article  CAS  Google Scholar 

  15. Hsieh BT, Chang YJ, Han RP, Wu J, Hsieh LL, Chang CJ (2011) A study on dose response of NIPAM-based dosimeter used in radiotherapy. J Radioanal Nucl Chem 290:141–148

    Article  CAS  Google Scholar 

  16. Chang Y-J, Hsieh B-T, Liang J-A (2011) A systematic approach to determine optimal composition of gel used in radiation therapy. Nuclear Instrum Methods Phys Res A 652:783–785

    Article  CAS  Google Scholar 

  17. Cheng H-W, Ho C-J, Lee C-C, Tu S-J, Shih B-Y, Chao T-C (2011) Development of a novel optical CT employing a laser to create a collimated line-source with a flat-top intensity distribution. Radiat Meas 46:1932–1935

    Article  CAS  Google Scholar 

  18. Papadakis AE, Zacharakis G, Maris TG, Ripoll J, Damilakis J (2010) A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible? IEEE Trans Med Imaging 29(5):1204–1212

    Article  Google Scholar 

  19. Watanabe Y, Kubo H (2011) A variable echo-number method for estimating R2 in MRI-based polymer gel dosimetry. Med Phys 38(2):975–982

    Article  Google Scholar 

  20. Wuu C-S, Xu Y (2011) 3-D dosimetry with optical CT scanning of polymer gels and radiochromic plastic dosimeter. Radiat Meas 46:1903–1907

    Article  CAS  Google Scholar 

  21. Sedaghat M, Bujold R, Lepage M (2011) Investigating potential physicochemical errors in polymer gel dosimeters. Phys Med Biol 56:6083–6107

    Article  CAS  Google Scholar 

  22. Sedaghat M, Bujold R, Lepage M (2011) Severe dose inaccuracies caused by an oxygen-antioxidant imbalance in normoxic polymer gel dosimeters. Phys Med Biol 56:601–625

    Article  CAS  Google Scholar 

  23. Chiang C-M, Hsieh B-T, Shieh J-I, Cheng K-Y, Hsieh L-L (2013) An approach in exploring the fundamental dosimetric characteristics for a long shelf life irradiated acrylamide-based gel. J Radioanal Nucl Chem 298(2):1435–1445

    Article  CAS  Google Scholar 

  24. Vandecasteele J, Ghysel S, Baete SH, De Deene Y (2011) Radio-physical properties of micelle leucodye 3D integrating gel dosimeters. Phys Med Biol 56:627–651

    Article  CAS  Google Scholar 

  25. Pirani LF, Oliveira LND, Petchevist PCD, Moreira MV, Ila D, Almeida AD (2009) New chemical Fricke gel radiation dosimeter. J Radioanal Nucl Chem 280(2):259–264

    Article  CAS  Google Scholar 

  26. Davies JB, Baldock C (2010) Temperature dependence on the dose response of the Fricke–gelatin–xylenol orange gel dosimeter. Radiat Phys Chem 79:660–662

    Article  CAS  Google Scholar 

  27. Venning AJ, Brindha S, Hill B, Baldock C (2004) Preliminary study of a normoxic PAG gel dosimeter with tetrakis (hydroxymethyl) phosphonium chloride as an antioxidant. J Phys Conf Ser 3:155–158

    Article  CAS  Google Scholar 

  28. Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C (2005) Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 50:3875–3888

    Article  CAS  Google Scholar 

  29. Olsson LE, Fransson A, Ericsson A, Mattssont S (1990) MR imaging of absorbed dose distributions for radiotherapy using ferrous sulphate gels. Phys Med Biol 35(12):1623–1631

    Article  CAS  Google Scholar 

  30. De Deene Y (2004) Essential characteristics of polymer gel dosimeters. J Phys Conf Ser 3:34–57

    Article  Google Scholar 

  31. Gore JC, Ranade M, Maryanski MJ, Schulz RJ (1996) Radiation dose distribution in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner. Phys Med Biol 41:2695–2704

    Article  CAS  Google Scholar 

  32. Maryanski MJ, Zastavker YZ, Gore JC (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys Med Biol 41:2705–2717

    Article  CAS  Google Scholar 

  33. Hilts M, Audet C, Duzenli C, Jirasek A (2000) Polymer gel dosimetry using X-ray computed tomography: a feasibility study. Phys Med Biol 45:2559–2571

    Article  CAS  Google Scholar 

  34. Mather ML, Whittaker AK, Baldock C (2002) Ultrasound evaluation of polymer gel dosimeters. Phys Med Biol 47:1449–1458

    Article  Google Scholar 

  35. De Deene Y (2004) Fundamentals of MRI measurements for gel dosimetry. J Phys Conf Ser 3:87–114

    Article  Google Scholar 

  36. Hilts M (2006) X-Ray computed tomography imaging of polymer gel dosimeters. In: Lepage M, Jirasek A, Schreiner LJ (eds) Preliminary proceeding of DOSGEL 2006, Sherbrooke (Quebec), Canada, University of Sherbrooke, pp 206–218

  37. Mather ML, De Deene Y, Whittaker AK, Simon GP, Rutgers R, Baldock C (2002) Investigation of ultrasonic properties of PAG and MAGIC polymer gel dosimeters. Phys Med Biol 47(24):4397–4409

    Article  Google Scholar 

  38. Mather ML, Charles PH, Baldock C (2003) Measurement of ultrasonic attenuation coefficient in polymer gel dosimeters. Phys Med Biol 48(20):N269–N275

    Article  CAS  Google Scholar 

  39. Hu J, Li S, Wang D, Liu B (2004) Influence of cyclodextrin and its glucose units on polymerization of styrene. Polym Int 53:1003–1006

    Article  CAS  Google Scholar 

  40. Gambarini G, Agosteo S, Nava E, Palazzi P, Pecci A, Rosa R, Rosi G, Tinti R (2001) Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging. In: Current status of neutron capture therapy (IAEA-TECDOC-1223). International Atomic Energy Agency (IAEA), Vienna

  41. Zhu X, Reese TG, Crowley EM, Fakhri GE (2010) Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry. Med Phys 37(1):183–188

    Article  CAS  Google Scholar 

  42. De Deene Y, Vergote K, Claeys C, Cd Wagter (2006) The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys Med Biol 51:653–673

    Article  Google Scholar 

  43. Baldock C, Lepage M, Back SA, Murry PJ, Jayasekera PM, Porter D, Kron T (2001) Dose resolution in radiotherapy gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460

    Article  Google Scholar 

  44. Venning AJ, Nitschke KN, Keall PJ, Baldock C (2005) Radiological properties of normoxic polymer gel dosimeters. Med Phys 32(4):1047–1053

    Article  CAS  Google Scholar 

  45. Shrimpton PC (1981) Electron density values of various human tissues: in vitro Compton scatter measurements and calculated ranges. Phys Med Biol 26:907–911. doi:10.1088/0031-9155/26/5/010

    Article  CAS  Google Scholar 

  46. Khan FM (2010) The physics of radiation therapy, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  47. IAEA (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical report series no 398. IAEA, Vienna

  48. De Deene Y, Baldock C (2002) Optimization of multiple spin-echo sequences for 3D polymer gel dosimetry. Phys Med Biol 47:3117–3141

    Article  Google Scholar 

  49. De Deene Y, Van de Walle R, Achten E, De Wagter C (1998) Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Sig Process 70:85–101

    Article  Google Scholar 

  50. Bethesda M (1989) Tissue substitutes in radiation dosimetry and measurement. International Commission on Radiation Units and Measurements (ICRU)

  51. De Deene Y, Hanselaer P, Wagter CD, Achten E, Neve WD (2000) An investigation of the chemical stability of a monomer/polymer gel dosimeter. Phys Med Biol 45:859–878

    Article  Google Scholar 

  52. Young RJ (1981) Introduction to polymers. Chapman and Hall, London

    Book  Google Scholar 

  53. Greg JS, Park YS, McAuley KB, Schreiner LJ (2002) Temperature increases associated with polymerization of irradiated PAG dosimeters. Phys Med Biol 47(9):1435–1448

    Article  Google Scholar 

  54. De Deene Y, Wagter CD (2001) Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning. Phys Med Biol 46:2697–2711

    Article  Google Scholar 

  55. Benson EE (1990) Free radical damage in stored plant germplasm. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  56. De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463

    Article  Google Scholar 

  57. Lepage M, Whittaker AK, Rintoul L, Back SA, Baldock C (2001) Modelling of post-irradiation events in polymer gel dosimeters. Phys Med Biol 46:2827–2839

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The assistance of Chemical-Physics Laboratory of the Faculty of Chemistry of Shahid Beheshti University is greatly appreciated. The authors acknowledge the Radiotherapy Department of Shohadae-Tajrish Hospital for their kind contribution in gel irradiation. The authors also acknowledge the Radiology Departments of Shohadae-Tajrish hospital specially Mr. Masoud Heidari for his kind efforts in gel imaging. Authors appreciate Mrs. Somayeh Saghamanesh for her useful help with English polishing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abtahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abtahi, S.M., Aghamiri, S.M.R. & Khalafi, H. Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 300, 287–301 (2014). https://doi.org/10.1007/s10967-014-2983-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2983-7

Keywords

Navigation