Skip to main content
Log in

Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The smectite-rich natural clay is being considered as a backfill and buffer material for Indian repository programme. In the present study, batch sorption measurements have been performed at trace concentrations for one of the minor actinide elements [Np(V)] and for the long lived fission products, Cs(I), Sr(II), and Tc(VII) on purified and conditioned smectite-rich clay at varying conditions of pH and ionic strength. In case of Cs(I) and Sr(II) the sorption was found to increase with pH. At any pH the sorption was found to decrease with increasing ionic strength of the suspension maintained with NaCl. Further, at any pH the sorption of Sr(II) is less than the corresponding value for Cs(I). This is indicative of effect of size selectivity on the sorption by the clay. Tc(VII), on the other hand, is poorly retained by the clay, which can be explained in terms of the negative charge on the TcO4 ion, which has negligible interaction with the predominantly negatively charged clay surface. In the case of Np(V), the sorption was found to increase albeit, slowly compared to Cs(I) and Sr(II) with pH, and it with no effect of ionic strength on the sorption at all pH values. This suggests that Np(V) primarily interacts with the surface sites via inner sphere complexation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cornell RM (1993) J Radioanal Nucl Chem 171:483–500

    Article  CAS  Google Scholar 

  2. Jedináková-Křížová V (1996) J Radioanal Nucl Chem 208:559–575

    Article  Google Scholar 

  3. Xiangke W, Wenming D, Jinzhou D, Zuyi T (1999) J Radioanal Nucl Chem 240:783–787

    Article  Google Scholar 

  4. Vejsada J, Vokal A, Vopalka D, Filipska H (2006) Czechoslov J Phys 56:D73–D79

    Article  CAS  Google Scholar 

  5. Filipská H, Štamberg K (2006) J Radioanal Nucl Chem 270:531–542

    Article  Google Scholar 

  6. Wersin P, Soler JM, Van Loon L, Eikenberg J, Baeyens B, Grolimund D, Gimmi T, Dewonck S (2008) Appl Geochem 23:678–691

    Article  CAS  Google Scholar 

  7. Galamboš M, Kufčáková J, Rajec P (2009) J Radioanal Nucl Chem 281:485–492

    Article  Google Scholar 

  8. Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcova R (2010) J Radioanal Nucl Chem 284:55–64

    Article  Google Scholar 

  9. Wang XK (2003) J Radioanal Nucl Chem 258:315–319

    Article  CAS  Google Scholar 

  10. Xu D, Chen CL, Wang XK (2006) J Radioanal Nucl Chem 267:357–362

    Article  CAS  Google Scholar 

  11. Xiongxin D, Zuyi T (1999) J Radioanal Nucl Chem 242:727–730

    Article  Google Scholar 

  12. Tkáč P, Kopunec R, Macášek F, Skrašková S (2000) J Radioanal Nucl Chem 246:527–531

    Article  Google Scholar 

  13. Wang X, Tan X, Ning Q, Chen C (2005) Appl Radiat Isot 62:759–764

    Article  CAS  Google Scholar 

  14. Vinsova H, Konirova R, Koudelkova M, Jedinakova-Krizova V (2004) J Radioanal Nucl Chem 261:407–413

    Article  CAS  Google Scholar 

  15. Baik MH, Kim SS, Lee JK, Lee SY, Kim GY, Yun ST (2010) J Radioanal Nucl Chem 283:337–345

    Article  CAS  Google Scholar 

  16. Aksoyoglu S, Burkart W, Goerlich W (1991) J Radioanal Nucl Chem 149:119–122

    Article  CAS  Google Scholar 

  17. Sabodina MN, Kalmykov SN, Sapozhnikov YA, Zakharova EV (2006) J Radioanal Nucl Chem 270:349–355

    Article  CAS  Google Scholar 

  18. Weijuan L, Zuyi T, Liangtian G, Shushen L (2003) Radiochim Acta 91:575–582

    Article  Google Scholar 

  19. Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Radiochim Acta 99:71–77

    Article  Google Scholar 

  20. Amayri S, Jermolajev A, Reich T (2011) Radiochim Acta 99:349–357

    Article  CAS  Google Scholar 

  21. Mulyutin VV, Gelis VM, Nekrasova NA, Kononenko OA, Vezentsev AI, Volovicheva AN, Korol’kova VS (2012) Radiochemistry 54:75–78

    Article  CAS  Google Scholar 

  22. Pente AS (2010) Characterisation of swelling clay minerals for evaluation of their suitability as buffer/backfill material for nuclear waste repository, Ph.D. Thesis, Mumbai University

  23. Kumar S, Pente AS, Kaushik CP, Bajpai RK, Tomar BS (2011) In: Proceedings of 13th international conference on the chemistry and migration behaviour of actinides and fission products in the geosphere, Beijing, Sept 18–23, p 294

  24. Kumar S, Kasar S, Tomar BS (2013) DAE-BRNS symposium on nuclear and radiochemistry, Govt. Model Science College, Jabalpur, Feb 19–23, p 577

  25. Kumar S, Rawat N, Tomar BS, Manchanda VK, Ramanathan S (2007) J Radioanal Nucl Chem 274:229–231

    Article  CAS  Google Scholar 

  26. Jain A, Kumar S, Rawat N, Tomar BS, Manchanda VK, Ramanathan S (2007) Radiochim Acta 95:501–506

    Article  CAS  Google Scholar 

  27. Kasar S, Kumar S, Kar A, Krishnan K, Kulkarni NK, Tomar BS (2012) J Radioanal Nucl Chem 294:103–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Tomar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasar, S., Kumar, S., Kar, A. et al. Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay. J Radioanal Nucl Chem 300, 71–75 (2014). https://doi.org/10.1007/s10967-014-2943-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2943-2

Keywords

Navigation