Skip to main content
Log in

Use of 222Rn to trace submarine groundwater discharge in a tidal period along the coast of Xiangshan, Zhejiang, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

222Rn is one of the operative tracers for submarine groundwater discharge (SGD), which plays a significant role in the land–ocean interaction of the estuarine and coastal regions. By the distribution pattern of 222Rn in atmosphere, groundwater and surface seawater, in a full tidal period (25 h) in March 2012, SGD was estimated along the coast of Xiangshan, Zhejiang, China. 222Rn activity in Xiangshan coast was in range of 2.4 × 104–1.7 × 105 Bq/m3 with an average of 9.6 × 104 Bq/m3 for groundwater; 0.2 × 102–2.8 × 102 Bq/m3 with an average of 1.1 × 102 Bq/m3 for surface seawater. 222Rn activities in groundwater were much greater than those in surface water, suggesting that the major source of radon came from coastal groundwater discharge. Rn fluxes of atmospheric emissions, sediment, and of 226Ra in situ decay can be negligible in this study, but the tidal effects play a crucial role in Rn fluxes. Using a radon inventory equilibrium model, we estimated that the average SGD was 13.2 cm/day and the average terrestrial SGD flux was 1.8 × 108 m3/day. Furthermore, SGD may have a vital impact on the composition and structure of nutrients in seawater, and contribute to eutrophication events occurring in spring season along the coast of the East China Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193(2):291–300

    Article  CAS  Google Scholar 

  2. Przylibski TA, Kozłowska B, Dorda J, Kiełczawa B (2002) Radon-222 and 226Ra concentrations in mineralized groundwaters of Gorzanów (Kłodzko Basin, Sudeten Mountains, SW Poland). J Radioanal Nucl Chem 253(1):11–19

    Article  CAS  Google Scholar 

  3. Song G, Wang XM, Chen DY, Chen YH (2011) Contribution of 222Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China. J Environ Radioact 102:400–406

    Article  CAS  Google Scholar 

  4. Mihci M, Buyuksarac A, Aydemir A, Celebi N (2010) Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting. J Environ Radioact 101:952–957

    Article  CAS  Google Scholar 

  5. Toshitaka G, Yoshio H (1984) Excess bottom 222Rn profiles and their implications in the northwestern Pacific Ocean. Earth Planet Sci Lett 71(2):215–228

    Article  Google Scholar 

  6. Moore WS (1999) The subterranean estuary: a reaction zone of groundwater and seawater. Mar Chem 65:111–125

    Article  CAS  Google Scholar 

  7. Moore WS, Krest J, Taylor G, Roggenstein E, Joye S, Lee R (2002) Thermal evidence of water exchange through a coastal aquifer: implications for nutrient fluxes. Geophys Res Lett 29(14):49.1–49.4

    Article  Google Scholar 

  8. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Article  CAS  Google Scholar 

  9. Moore WS (2003) Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66:75–93

    Article  CAS  Google Scholar 

  10. Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88

    Article  Google Scholar 

  11. Burnett WC, Kim G, Smith DL (2001) A continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 1:167–172

    Google Scholar 

  12. Swarzenski PW (2007) U/Th series radionuclides as coastal groundwater tracers. Chem Rev 107:663–674

    Article  CAS  Google Scholar 

  13. Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69:21–35

    Article  CAS  Google Scholar 

  14. Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614

    Article  CAS  Google Scholar 

  15. Darko EO, Adukpo OK, Fletche JJ, Awudu AR, Otoo F (2010) Preliminary studies on 222Rn concentration in ground water from selected areas of the Accra metropolis in Ghana. J Radioanal Nucl Chem 283(2):507–512

    Article  CAS  Google Scholar 

  16. Idriss H, Salih I, Sam AK (2011) Study of radon in ground water and physicochemical parameters in Khartoum state. J Radioanal Nucl Chem 290(2):333–338

    Article  CAS  Google Scholar 

  17. Kitto ME, Kuhland MK (1995) Radon measurements in groundwater. J Radioanal Nucl Chem 193(2):253–258

    Article  CAS  Google Scholar 

  18. Selvasekarapandian S, Sivakumar R, Manikandan NM, Ragjunath VM, Kannan V, Rajaram S (2002) A study on the radon concentration in water in Coonoor, India. J Radioanal Nucl Chem 252(2):345–347

    Article  CAS  Google Scholar 

  19. Somashekar RK, Ravikumar P (2010) Radon concentration in groundwater of Varahi and Markandeya river basins, Karnataka State, India. J Radioanal Nucl Chem 285(2):343–351

    Article  CAS  Google Scholar 

  20. Freyer K, Treutler HC, Just G, Philipsborn HV (2003) Optimization of time resolution and detection limit for online measurements of 222Rn in water. J Radioanal Nucl Chem 257(1):129–132

    Article  CAS  Google Scholar 

  21. Treutler HC, Just G, Schubert M, Weiss H (2007) Radon as a tracer to determine the mean residence times of groundwater in decontamination reactors. J Radioanal Nucl Chem 272(1):3583–3588

    Google Scholar 

  22. Dulaiova H, Peterson R, Burnett WC, Lane-Smith D (2005) A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 263(2):361.365

    Google Scholar 

  23. Xu BC, Burnett WC, Lane-Smith D, Yu ZG (2010) A simple laboratory-based radon calibration system. J Radioanal Nucl Chem 283:457–463

    Article  CAS  Google Scholar 

  24. Gu HQ, Moore WS, Zhang L, Du JZ, Zhang J (2012) Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Cont Shelf Res 35:95–107

    Article  Google Scholar 

  25. Su N, Du JZ, Moore WS, Liu SM, Zhang J (2011) An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Sci Total Environ 409:3909–3918

    Article  CAS  Google Scholar 

  26. Ji T, Du JZ, Moore WS, Zhang GS, Su N, Zhang J (2013) Nutrient inputs to a Lagoon through submarine groundwater discharge: the case of Laoye Lagoon, Hainan, China. J Mar Syst 111–112:253–262

    Article  Google Scholar 

  27. van Beek P, Souhaut M, Reyss J-L (2010) Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry. J Environ Radioact 101(7):521–529

    Article  Google Scholar 

  28. Kleinsshmidt R, Black J, Akber R (2011) Mapping radioactivity in groundwater to identify elevated exposure in remote and rural communities. J Environ Radioact 102:235–243

    Article  Google Scholar 

  29. Christopher SG, Peter SW (2012) An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol Oceanol 57(2):471–485

    Article  Google Scholar 

  30. Tse KC, Jiao JJ (2008) Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn. Mar Chem 111:160–170

    Article  CAS  Google Scholar 

  31. Burnett WC, Peterson RN, Chanyotha S, Wattayakorn G, Ryan B (2012) Using high-resolution in situ radon measurements to determine groundwater discharge at a remote location: Tonle Sap Lake, Cambodia. J Radioanal Nucl Chem 293:96–103

    Google Scholar 

  32. Oliveira J, Costa P, Braga ES (2006) Seasonal variations of 222Rn and SGD fluxes to Ubatuba embayments, São Paulo. J Radioanal Nucl Chem 269(3):689–695

    Article  CAS  Google Scholar 

  33. Macintyre S, Wanninkhof R, Chanton JP (1995) Trace gas exchange across the air-sea interface in freshwater and coastal marine environments. In: Matson PA, Harris RC, Harris RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell Science Ltd., London, pp 52–97

    Google Scholar 

  34. Martens CS, Kipphut GW, Klump JV (1980) Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science 208(4441):285–288

    Article  CAS  Google Scholar 

  35. Lee KY, Yoon YY, Ko KS (2010) Determination of the emanation coefficient and the Henry’s law constant for the groundwater radon. J Radioanal Nucl Chem 286(2):381–385

    Article  CAS  Google Scholar 

  36. Corbett DR, Burnett WC, Cable PH, Clark SB (1998) A multiple approach to the determination of radon fluxes from sediments. J Radioanal Nucl Chem 236(1–2):247–253

    Article  CAS  Google Scholar 

  37. Boehm AB, Paytan A, Shellenbarger GG et al (2006) Composition and flux of groundwater from a California beach aquifer: implications for nutrient supply to the surf zone. Cont Shelf Res 26:269–2821

    Article  Google Scholar 

  38. Santos IR, Deveze CL, Peterson RN, Burnett WC (2011) Tracing submarine hydrothermal inputs into a coastal bay in Baja California using radon. Chem Geol 282(1–2):1–10

    Article  CAS  Google Scholar 

  39. Purkla S, Eisenhauer S (2004) Determination of radium isotopes and 222Rn in a groundwater affected coastal area of the Baltic Sea and the underlying sub-sea floor aquifer. Mar Chem 87:137–149

    Article  Google Scholar 

  40. Isaac RS, Peterson R (2010) Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Mar Chem 121:37–48

    Article  Google Scholar 

  41. Schubert M, Schmidt A (2011) Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging. J Environ Radioact 102:193–199

    Article  CAS  Google Scholar 

  42. Hussain N, Church TM, Kim G (1999) Use of 222Rn and 226Ra to trace groundwater discharge into the Chesapeake Bay. Mar Chem 65:127–134

    Article  CAS  Google Scholar 

  43. Radakovitch O, Mayer A (2007) Submarine groundwater discharge estimates on coastal waters based on 222Rn measurements. Rapp Comm Int Explor Sci Mer Mediterr 38:698

    Google Scholar 

  44. Kiliari T, Tsiaili A, Pashalidis I (2010) Lithological and seasonal variations in radon concentrations in Cypriot groundwaters. J Radioanal Nucl Chem 284(3):553–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the lab colleagues of State Key Laboratory of Estuarine and Coastal Research of China for their field help. This research was supported by the Natural Science Foundation of China (41240038, 41021064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhou Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, T., Du, J., Ji, T. et al. Use of 222Rn to trace submarine groundwater discharge in a tidal period along the coast of Xiangshan, Zhejiang, China. J Radioanal Nucl Chem 299, 53–60 (2014). https://doi.org/10.1007/s10967-013-2786-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2786-2

Keywords

Navigation