Skip to main content

Advertisement

Log in

Large inputs of groundwater and associated fluxes of alkalinity and nutrients into Jiaozhou Bay, China

Grands apports d’eau souterraine et de flux associés d’alcalinité et de nutriments dans la baie de Jiaozhou, Chine

Aportes de agua subterránea y flujos asociados a la alcalinidad y nutrientes en la Bahía de Jiaozhou, China

中国胶州湾地下水和相关的碱度和营养盐的大量排入

Grandes entradas de águas subterrâneas e fluxos associados de alcalinidade e nutrientes na Baía de Jiaozhou, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Submarine groundwater discharge (SGD) as a major source of alkalinity has rarely been studied in Jiaozhou Bay, China. The presented study used radon (222Rn) and radium isotopes to investigate SGD and its influence on alkalinity and nutrient inputs into the bay. Time-series observations of 222Rn were used to quantify groundwater dynamics over tidal time scales and the results showed that the SGD rates at point-scale were 0–67.2 (mean: 17.8) cm/day and 0–43.6 (mean: 12.3) cm/day in wet and dry seasons, respectively. Using radium mass balance models, the SGD in the whole bay was estimated to be (1.29–2.60) × 107 m3/day in wet season and (5.81–6.83) × 106 m3/day in dry season. Thus, both sets of results indicated higher SGD fluxes in wet season than in dry season. Such a seasonal variation pattern suggests a rapid response to local precipitation. The alkalinity fluxes associated with SGD were generally greater than those from the local rivers. Among the nutrient sources, SGD contributed about 63, 24 and 37% of total dissolved inorganic nitrogen, reactive phosphorus and silicate inputs, respectively. These results demonstrated that groundwater seepage is a major factor driving alkalinity and nutrients (especially dissolved inorganic nitrogen) into Jiaozhou Bay. SGD may have an important influence on the budgets of elements (C, N, P) and ecological environments in coastal waters.

Résumé

L’apport principal en alcalinité des sorties sous-marines d’eau souterraine (SGD) a été peu étudié dans la Baie de Jiaozhou en Chine. Cette présente étude a utilisé le radon (222Rn) et les isotopes du radium pour investiguer les SGD et leur influence sur l’alcalinité et les apports en nutriment dans la baie. Les séries chronologiques des observations du 222Rn ont été utilisées pour quantifier la dynamique des eaux souterraines à l’échelle du temps des marées et les résultats ont montré que les vitesses ponctuelles au niveau des SGD étaient de 0–67.2 (moyenne: 17.8) cm/jour et 0–43.6 (moyenne: 12.3) cm/jour en saisons humide et sèche, respectivement. En utilisant des modèles d’équilibre de masse du radium, le SGD dans l’ensemble de la baie a été estimée à (1.29–2.60) × 107 m3/jour en saison humide et (5.81–6.83) × 106 m3/jour en saison sèche. Ainsi, les deux ensembles de résultats ont indiqué des flux SGD plus élevés en saison humide qu’en saison sèche. Une telle variation saisonnière suggère une réponse rapide aux précipitations locales. Les flux alcalins associés aux SGD étaient généralement plus importants que ceux associés aux rivières locales. Parmi les sources de nutriments, les SGD ont contribué à environ 63, 24 et 37% des apports en azote inorganique dissous total, phosphore réactif et silicate, respectivement. Ces résultats ont démontré que les apports d’eaux souterraines dans la baie de Jiaozhou est un facteur majeur de contrôle de l’alcalinité et des nutriments (spécialement l’azote inorganique dissous). Les SGD peuvent avoir une influence importante sur les bilans de masse des éléments (C, N, P) et les environnements écologiques des eaux côtières.

Resumen

La descarga submarina de aguas subterráneas (SGD) como fuente principal de alcalinidad ha sido rara vez estudiada en la Bahía de Jiaozhou, China. El estudio presentado utilizó isótopos de radón (222Rn) y radio para investigar la SGD y su influencia en la alcalinidad y los aportes de nutrientes a la bahía. Se utilizaron observaciones en serie temporal de 222Rn para cuantificar la dinámica de las aguas subterráneas en escalas temporales de mareas y los resultados mostraron que las tasas de SGD en escala puntual eran de 0–67.2 (media: 17.8) cm/día y 0–43.6 (media: 12.3) cm/día en las estaciones húmeda y seca, respectivamente. Utilizando modelos de equilibrio de masa del radio, se estimó que el SGD en toda la bahía era de (1.29–2.60) × 107 m3/día en la estación húmeda y (5.81–6.83) × 106 m3/día en la estación seca. Por lo tanto, ambos conjuntos de resultados indicaron mayores flujos de SGD en la estación húmeda que en la seca. Tal patrón de variación estacional sugiere una respuesta rápida a la precipitación local. Los flujos de alcalinidad asociados a la SGD fueron generalmente mayores que los de los ríos locales. Entre las fuentes de nutrientes, la SGD contribuyó con cerca del 63, 24 y 37% del total de las entradas de nitrógeno inorgánico disuelto, fósforo reactivo y silicato, respectivamente. Estos resultados demostraron que la filtración de las aguas subterráneas es un factor importante que impulsa la alcalinidad y los nutrientes (especialmente el nitrógeno inorgánico disuelto) en la Bahía de Jiaozhou. El SGD puede tener una importante influencia en los balances de los elementos (C, N, P) y en los entornos ecológicos de las aguas costeras.

摘要

海底地下水排泄(SGD)是中国胶州湾碱度的主要来源,但很少进行研究。本项研究使用氡(222Rn)和镭同位素研究了SGD及其对碱度和营养盐输入海湾的影响。使用观测的222Rn的时间序列数据来量化潮汐时间尺度上的地下水动力机制,结果表明点尺度下的SGD速率在雨季和旱季分别为0–67.2(平均:17.8)cm/day和0–43.6(平均:12.3)cm/day。使用镭质量平衡模型,估计整个海湾在雨季的SGD为(1.29–2.60) × 107 m3/day,而在旱季为(5.81–6.83) × 106 m3/day。因此,两组结果均表明,雨季的SGD通量高于旱季。这种季节性变化模式表明对局部降水有快速响应。与SGD相关的碱度通量通常大于当地河流的碱度通量。在营养盐来源中,SGD贡献分别贡献了总溶解无机氮,活性磷和硅酸盐的63%,24%和37%。这些结果表明,地下渗流是驱动胶州湾碱度和营养盐(特别是溶解的无机氮)的主要因素。 SGD可能会对沿海水域元素(C,N,P)的平衡和生态环境产生重要影响。

Resumo

A descarga submarina de águas subterrâneas (DSAS) como uma fonte principal de alcalinidade foi raramente estudada na Baía de Jiaozhou, China. O presente estudo utilizou Radônio (222Rn) e isótopos de rádio para investigar a DSAS e a sua influência na alcalinidade e entradas de nutrientes na baía. Séries temporais de observações de 222Rn foram utilizadas para quantificar a dinâmica das águas subterrâneas em escala de tempo de marés e os resultados mostraram que as taxas de DSAS em escala pontual foram de 0–67.2 (média: 17.8) cm/dia e 0–43.6 (média: 12.3) cm/dia nas estações úmida e seca, respectivamente. Utilizando modelos de balanço de massa de rádio, a DSAS em toda a baía foi estimada em (1.29–2.60) × 107m3/dia na estação úmida e (5.81–6.83) × 106 m3/dia na estação seca. Portanto, ambos os resultados indicam taxas mais altas de DSAS na estação úmida do que na estação seca. Padrões tão sazonais de variação sugerem uma rápida resposta a precipitação local. Os fluxos de alcalinidade associados com DSAS foram geralmente maiores que aqueles de rios locais. Dentre as fontes de nutrientes, a DSAS contribui com cerca de 63, 24 e 37% do nitrogênio inorgânico dissolvido, fósforo reativo e silicato, respectivamente. Esses resultados demonstram que a infiltração de águas subterrâneas é um fator preponderante na condução de alcalinidade e nutrientes (especialmente nitrogênio orgânico dissolvido) na Baía de Jiaozhou. DSAS podem ter uma influência importante nas reservas de elementos (C, N, P) e ambientes ecológicos em águas costeiras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkins ML, Santos IR, Maher DT (2017) Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and δ13C signatures in a subtropical river network. Sci Total Environ 575:545–563. https://doi.org/10.1016/j.scitotenv.2016.09.020

    Article  Google Scholar 

  • Beck AJ, Tsukamoto Y, Tovar-Sanchez A, Huerta-Diaz M, Bokuniewicz HJ, Sañudo-Wilhelmy SA (2007) Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes. Appl Geochem 22(2):477–490. https://doi.org/10.1016/j.apgeochem.2006.10.005

    Article  Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69(1−2):21–35

    Article  Google Scholar 

  • Cerdà-Domènech M, Rodellas V, Folch A, Garcia-Orellana J (2017) Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: implications for derived SGD estimates. Sci Total Environ 595:849–857

    Article  Google Scholar 

  • Chaillou G, Couturier M, Tommi-Morin G, Rao AMF (2014) Total alkalinity and dissolved inorganic carbon production in groundwaters discharging through a sandy beach. Proceed Earth Planet Sci 10:88–99. https://doi.org/10.1016/j.proeps.2014.08.017

    Article  Google Scholar 

  • Chen C (2002) Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. Deep-Sea Res II 49:5365–5375

    Article  Google Scholar 

  • Cho H, Kim G, Kwon E, Moosdorf N, Garcia-Orellana J, Santos I (2018) Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Sci Rep 8:2439. https://doi.org/10.1038/s41598-018-20806-2

    Article  Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Eyre BD (2013) Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri lagoon, Cook Islands). Biogeosciences 10:2467–2480

    Article  Google Scholar 

  • Gao GD, Wang XH, Bao XW (2014) Land reclamation and its impact on tidal dynamics in Jiaozhou Bay, Qiandao, China. Estuar Coast Shelf Sci 151:285–294. https://doi.org/10.1016/j.ecss.2014.07.017

    Article  Google Scholar 

  • Gao Y, He N, Wang Q, Miao C (2013) Increase of external nutrient input impact on carbon sinks in Chinese coastal seas. Environ Sci Technol 47:13215–13216

    Article  Google Scholar 

  • Gustafsson E, Wällstedt T, Humborg C, Mörth C, Gustafsson B (2014) External total alkalinity loads versus internal generation: the influence of nonriverine alkalinity sources in the Baltic Sea. Glob Biogeochem Cycles 28:1358–1370. https://doi.org/10.1002/2014GB004888

    Article  Google Scholar 

  • Hu X, Cai WJ (2011) An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Glob Biogeochem Cycles 25(3):GB3003. https://doi.org/10.1029/2010gb003859

    Article  Google Scholar 

  • Hwang DW, Kim G, Lee WC, Oh HT (2010) The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. J Sea Res 64(3):224–230

    Article  Google Scholar 

  • Ju T, Ge W, Jiang T, Chai C (2016) Polybrominated diphenyl ethers in dissolved and suspended phases of seawater and in surface sediment from Jiaozhou Bay, North China. Sci Total Environ 557−558:571–578. https://doi.org/10.1016/j.scitotenv.2016.03.013

    Article  Google Scholar 

  • Kim G, Kim JS, Hwang DW (2011) Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: implications for global biological production and organic carbon fluxes. Limnol Oceanogr 56:673–682

    Article  Google Scholar 

  • Krumins V, Gehlen M, Arndt S, Van Cappellen P, Regnier P (2013) Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10(1):371–398. https://doi.org/10.5194/bg-10-371-2013

    Article  Google Scholar 

  • Li X, Song J, Niu L, Yuan H, Li N, Gao X (2007) Role of the Jiaozhou Bay as a source/sink of CO2 over a seasonal cycle. Sci Mar 71(3):441–450

    Article  Google Scholar 

  • Li Y, Yang X, Han P, Xue L, Zhang L (2017) Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain. J Mar Syst 173:49–59. https://doi.org/10.1016/j.jmarsys.2017.04.006

    Article  Google Scholar 

  • Liu G, Liu Z, Gao H, Gao Z, Feng S (2012a) Simulation of the Lagrangian tide-induced residual velocity in a tide-dominated coastal system: a case study of Jiaozhou Bay, China. Ocean Dyn 62(10–12):1443–1456. https://doi.org/10.1007/s10236-012-0577-x

    Article  Google Scholar 

  • Liu Q, Dai M, Chen W, Huh CA, Wang G, Li Q, Charette MA (2012b) How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system? Biogeosciences 9(5):1777–1795. https://doi.org/10.5194/bg-9-1777-2012

    Article  Google Scholar 

  • Liu Q, Charette MA, Henderson PB, McCorkle DC, Martin W, Dai M (2014) Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle. Limnol Oceanogr 59(5):1529–1554. https://doi.org/10.4319/lo.2014.59.5.1529

    Article  Google Scholar 

  • Liu Q, Charette MA, Breier CF, Henderson PB, McCorkle DC, Martin W, Dai M (2017) Carbonate system biogeochemistry in a subterranean estuary: Waquoit Bay, USA. Geochim Cosmochim Acta 203:422–439. https://doi.org/10.1016/j.gca.2017.01.041

    Article  Google Scholar 

  • Luo X, Jiao JJ (2016) Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Res 102:11–31. https://doi.org/10.1016/j.watres.2016.06.017

    Article  Google Scholar 

  • Makings U, Santos IR, Maher DT, Golsby-Smith L, Eyre BD (2014) Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary. Estuar Coast Shelf Sci 143:65–76. https://doi.org/10.1016/j.ecss.2014.02.003

    Article  Google Scholar 

  • Moore WS (1976) Sampling 228Ra in the deep ocean. Deep-Sea Res Oceanogr Abstr 23(7):647–651

    Article  Google Scholar 

  • Moore WS, Arnold R (1996) Measurement of Ra-223 and Ra-224 in coastal waters using a delayed coincidence counter. J Geophys Res 101:1321–1329

    Article  Google Scholar 

  • Moore WS, Beck M, Riedel T, Rutgers van der Loeff M, Dellwig O, Shaw TJ, Schnetger B, Brumsack HJ (2011) Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea. Geochim Cosmochim Acta 75(21):6535–6555. https://doi.org/10.1016/j.gca.2011.08.037

    Article  Google Scholar 

  • Pan F, Guo ZR, Ma ZY, Yuan XJ (2015) Distribution characteristics and influence factors of 222Rn in riverine water and groundwater around Jiaozhou Bay. J Nuclear Radiochem 37(6):490–496

    Google Scholar 

  • Peterson RN, Burnett WC, Taniguchi M, Chen J, Santos IR, Ishitobi T (2008) Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. J Geophys Res 113:C09021. https://doi.org/10.1029/2008JC004776

    Article  Google Scholar 

  • Peterson RN, Burnett WC, Santos IR, Taniguchi M, Ishitobi T, Chen J (2009) Bohai Sea coastal transport rates and their influence on coastline nutrient inputs. In: From headwaters to the ocean: hydrological changes and watershed management. Hydrochange 2008, Kyoto, Japan, 1–3 October 2008, pp 659–664

  • Phillips NE, Gettleson DA, Spring KD (1990) Benthic biological studies of the Southwest Florida Shelf. Am Zool 30:65–75

    Article  Google Scholar 

  • Qu W, Li H, Huang H, Zheng C, Wang X, Zhang Y (2017) Seawater–groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China. J Hydrol 555:185–197

    Article  Google Scholar 

  • Renforth P, Henderson G (2017) Assessing ocean alkalinity for carbon sequestration. Rev Geophys 55(3):636–674. https://doi.org/10.1002/2016RG000533

    Article  Google Scholar 

  • Sadat-Noori M, Maher DT, Santos IR (2016) Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuar Coasts 39(3):639–656. https://doi.org/10.1007/s12237-015-0042-4

    Article  Google Scholar 

  • Sanders CJ, Santos IR, Barcellos R, Silva Filho EV (2012) Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise? Cont Shelf Res 43:86–94. https://doi.org/10.1016/j.csr.2012.04.015

    Article  Google Scholar 

  • Santos IR, Maher DT, Eyre BD (2012) Coupling automated radon and carbon dioxide measurements in coastal waters. Environ Sci Technol 46(14):7685–7691. https://doi.org/10.1021/es301961b

    Article  Google Scholar 

  • Santos IR, Beck M, Brumsack HJ, Maher DT, Dittmar T, Waska H, Schnetger B (2015) Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Mar Chem 171:10–20. https://doi.org/10.1016/j.marchem.2015.02.005

    Article  Google Scholar 

  • Stewart BT, Santos IR, Tait D, Macklin PA, Maher DT (2015) Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Mar Chem 174:1–12. https://doi.org/10.1016/j.marchem.2015.03.019

    Article  Google Scholar 

  • Tamborski JJ, Rogers AD, Bokuniewicz HJ, Cochran JK, Young CR (2015) Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing. Remote Sens Environ 171:202–217. https://doi.org/10.1016/j.rse.2015.10.010

    Article  Google Scholar 

  • Tang G, Yi L, Liu L, Cheng X (2015) Factors influencing the distribution of 223Ra and 224Ra in the coastal waters off Tanggu and Qikou in Bohai Bay. Cont Shelf Res 109:177–187. https://doi.org/10.1016/j.csr.2015.09.003

    Article  Google Scholar 

  • Wang X, Li H, Jiao JJ, Barry DA, Li L, Luo X, Wang C, Wan L, Wang X, Jiang X, Ma Q, Qu W (2015a) Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Sci Rep 5:8814. https://doi.org/10.1038/srep08814

    Article  Google Scholar 

  • Wang C, Liang S, Li Y, Li K, Wang X (2015b) The spatial distribution of dissolved and particulate heavy metals and their response to land-based inputs and tides in a semi-enclosed industrial embayment: Jiaozhou Bay, China. Environ Sci Pollut Res Int 22(14):10480–10495. https://doi.org/10.1007/s11356-015-4259-3

    Article  Google Scholar 

  • Wang G, Wang Z, Zhai W, Moore WS, Li Q, Yan X, Qi D, Jiang Y (2015c) Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochim Cosmochim Acta 149:103–114. https://doi.org/10.1016/j.gca.2014.11.001

    Article  Google Scholar 

  • Wang C, Guo J, Liang S, Wang Y, Yang Y, Wang X (2018) Long-term variations of the riverine input of potentially toxic dissolved elements and the impacts on their distribution in Jiaozhou Bay, China. Environ Sci Pollut Res 25:8800–8816. https://doi.org/10.1007/s11356-017-1118-4

    Article  Google Scholar 

  • Wu B, Lu C, Liu SM (2015) Dynamics of biogenic silica dissolution in Jiaozhou Bay, western Yellow Sea. Mar Chem 174:58–66

    Article  Google Scholar 

  • Xiao K, Li H, Song D, Chen Y, Wilson A, Shananan M, Huang Y (2019) Field measurements for investigating the dynamics of the tidal prism during a spring-neap tidal cycle in Jiaozhou Bay, China. J Coast Res. https://doi.org/10.2112/jcoastres-d-17-00121.1

  • Xing J, Song J, Yuan H, Li X, Li N, Duan L, Kang X, Wang Q (2017) Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Sci Total Environ 576:617–627. https://doi.org/10.1016/j.scitotenv.2016.10.134

    Article  Google Scholar 

  • Xing J, Song J, Yuan H, Wang Q, Li X, Li L, Duan L, Qu B (2018) Water soluble nitrogen and phosphorus in aerosols and dry deposition in Jiaozhou Bay, North China: deposition velocities, origins and biogeochemical implications. Atmos Res 207:90–99. https://doi.org/10.1016/j.atmosres.2018.03.001

    Article  Google Scholar 

  • Yang L, Wu Y, Zhang J, Liu S, Deng B (2011) Burial of terrestrial and marine organic carbon in Jiaozhou Bay: different responses to urbanization. Reg Environ Chang 11(3):707–714. https://doi.org/10.1007/s10113-010-0202-9

    Article  Google Scholar 

  • Yuan XJ, Guo ZR, Li WQ, Liu J, Ma ZR, Wang B (2014) Estimating submarine groundwater discharge in the Jiaozhou Bay using radium isotopes. Indian J Geo-Mar Sci 43(10):1–8

    Google Scholar 

  • Yuan H, Song J, Xing J, Li X, Li N, Duan L, Qu B, Wang Q (2018) Spatial and seasonal variations, partitioning and fluxes of dissolved and particulate nutrients in Jiaozhou Bay. Cont Shelf Res 171:140–149

    Article  Google Scholar 

  • Zhang L, Xue M, Liu Q (2012) Distribution and seasonal variation in the partial pressure of CO2 during autumn and winter in Jiaozhou Bay, a region of high urbanization. Mar Pollut Bull 64(1):56–65. https://doi.org/10.1016/j.marpolbul.2011.10.023

    Article  Google Scholar 

  • Zhang YP, Yang GP, Lu XL, Ding HB, Zhang HH (2013) Distributions of dissolved monosaccharides and polysaccharides in the surface microlayer and surface water of the Jiaozhou Bay and its adjacent area. Cont Shelf Res 63:85–93. https://doi.org/10.1016/j.csr.2013.05.002

    Article  Google Scholar 

  • Zhang Y, Li H, Wang X, Zheng C, Wang C, Xiao K, Wan L, Wang X, Jiang X, Guo H (2016) Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. J Hydrol 533:103–113. https://doi.org/10.1016/j.jhydrol.2015.11.027

    Article  Google Scholar 

  • Zhang Y, Li H, Xiao K, Wang X, Lu X, Zhang M, An A, Qu W, Wan L, Zheng C, Wang X, Jiang X (2017) Improving estimation of submarine groundwater discharge using radium and radon tracers: application in Jiaozhou Bay, China. J Geophys Res Oceans 122. https://doi.org/10.1002/2017jc013237

  • Zhou MJ, Shen ZL, Yu RC (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont Shelf Res 28(12):1483–1489

    Article  Google Scholar 

  • Zhu L, Richard B (2017) Summer characteristics of carbonate system in the Yellow Sea. Mar Sci 41(12):66–74

    Google Scholar 

Download references

Acknowledgements

The authors thank An An, Xiaoting Lu, Meng Zhang, Yanman Li, Manhua Luo, and Xiaolang Zhang for their field work. The data used to support the findings of this study are available in the ESM.

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41,430,641, 41,890,852) and the National Basic Research Program of China (“973” Program, Grant Nos. 2015CB452901 and 2015CB452902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Li.

Electronic supplementary material

ESM 1

(DOC 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Li, H. et al. Large inputs of groundwater and associated fluxes of alkalinity and nutrients into Jiaozhou Bay, China. Hydrogeol J 28, 1721–1734 (2020). https://doi.org/10.1007/s10040-020-02144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02144-8

Keywords

Navigation