Skip to main content
Log in

Radionuclides in biota collected near a dicalcium phosphate plant, southern Catalonia, Spain

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Industrial waste containing radioactive U-decay series isotopes was released into the Ebro River, Spain, over a period of >20 years from a dicalcium phosphate (DCP) plant. This release raised activities of several natural radionuclides (e.g. 238U, 234U, 230Th, 232Th and 226Ra) in biota taken from the area near the DCP plant. Plants and animals selected for this study included the green algae (Cladophora glomerata), the blue mussel (Mytilus edulis), the zebra mussel (Dreissena polymorpha) and the scavenger catfish (Silurus glanis) because they are all common in the area. Multiple sampling points were chosen for this study: (1) a site in the Riba-Roja Reservoir, above the DCP plant’s area of influence, (2) four sites in the area surrounding the DCP plant, close to the town of Flix, and (3) a location in the Ebro Delta Estuary in Fangar Bay. Significant differences in the activities (in Bq kg−1 of dry weight) for the radioisotopes included in this study among samples were attributed to sample location and the species evaluated. For instance, relatively high activities for uranium and radium were obtained in algae collected around the DCP plant, compared to results obtained for algae samples taken from the unimpacted Riba-Roja Reservoir. In contrast, for zebra mussels, enhanced activities were observed for all radionuclides and, in particular, for thorium and radium isotopes within the area of influence. Among catfish samples, activity values from different locations were not significantly different, though slightly higher activities were observed at the sampling point just downstream of the DCP factory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. IAEA (2006) Assessing the need for radiation protection measures in work involving minerals and raw materials. International Atomic Energy Agency, Vienna. Safety Report Series No. 49

  2. IAEA (2003) Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation. International Atomic Energy Agency, Vienna. Technical Report Series No. 419

  3. Attar LA, Al-Oudat M, Kanakri S, Budeir Y, Khalily H, Hamwi AA (2011) J Environ Manag 92:2151

    Article  Google Scholar 

  4. Casacuberta N, Lehritani M, Mantero J, Masqué P, García-Orellana J, Garcia-Tenorio R (2012) Appl Radiat Isot 70:568

    Article  CAS  Google Scholar 

  5. Samad MA, Ali MI, Paul D, Islam SMA (2012) J Bangladesh Aca Sci 36:79

    CAS  Google Scholar 

  6. Saueia CHR, Mazzilli BP, Taddei MHT (2009) J Radioanal Nucl Chem 281:201

    Article  CAS  Google Scholar 

  7. Casacuberta N, Masqué P, García-Orellana J, Bruach JM, Anguita M, Gasa J, Villa M, Hurtado S, García-Tenorio R (2009) J Hazard Mater 170:814

    Article  CAS  Google Scholar 

  8. Costa E (2004) PhD thesis, Universitat Autònoma de Barcelona (UAB), Bellaterra

  9. Mola M, Palomo M, Peñalver A, Aguilar C, Borrull F (2011) J Hazard Mater 198:57

    Article  CAS  Google Scholar 

  10. Villa M, Mosqueda F, Hurtado S, Mantenero J, Manjón G, Periañez R, Vaca F, García-Tenorio R (2009) Sci Total Environ 408:69

    Article  CAS  Google Scholar 

  11. Righi S, Lucialli P, Bruzzi L (2005) J Environ Radioact 82:167

    Article  CAS  Google Scholar 

  12. Palomo M, Peñalver A, Aguilar C, Borrull F (2010) Radioprotection 45:459

    Article  CAS  Google Scholar 

  13. Blanco Rodríguez P, Vera Tomé F, Lozano JC, Pérez Fernández MA (2010) Appl. Radiat Isot 68:1154

    Article  Google Scholar 

  14. Gaudry A, Zeroual S, Gaie-Levrel F, Moskura M, Boujrhal FZ, Cherkaoui El Moursli R, Guessous A, Mouradi A, Givernaud T, Delmas R (2007) Water Air Soil Pollut 178:267

    Article  CAS  Google Scholar 

  15. McCartney M, Davidson CM, Howe SE, Keating GE (2000) J Environ Radioact 49:279

    Article  CAS  Google Scholar 

  16. Al-Masri MS, Mamish S, Budeir Y (2002) J Environ Radioact 58:35

    Article  CAS  Google Scholar 

  17. Møller AP, Mousseau TA (2011) Ecol Ind 11:424

    Article  Google Scholar 

  18. Bollhöfer A, Brazier J, Humphrey C, Ryan B, Esparon A (2011) J Environ Radioact 102:964

    Article  Google Scholar 

  19. Vera Tomé F, Blanco Rodríguez P, Lozano JC (2002) J Environ Radioact 59:41

    Article  Google Scholar 

  20. Kalin M, Wheeler WN, Meinrath G (2005) J Environ Radioact 78:151

    Article  CAS  Google Scholar 

  21. Nadal M, Casacuberta N, Garcia-Orellana J, Ferré-Huguet N, Masqué P, Schuhmacher P, Domingo JL (2011) Environ Monit Assess 175:455

    Article  CAS  Google Scholar 

  22. Clulow FV, Davé NK, Lim TP, Avadhanula R (1998) Environ Pollut 99:199

    Article  CAS  Google Scholar 

  23. Martin P, Ryan B (2004) Sci World J 4:77

    Article  CAS  Google Scholar 

  24. Zorita I, Apraiz I, Ortiz-Zarragoitia M, Orbea A, Cancio I, Soto M, Marigómez I, Cajaraville MP (2007) Environ Pollut 148:236

    Article  CAS  Google Scholar 

  25. Carvalho FP, Oliveira JM, Alberto G (2011) J Environ Radioact 102:128

    Article  CAS  Google Scholar 

  26. Kiliç Ö, Çotuk Y (2011) J Radioanal Nucl Chem 289:627

    Article  Google Scholar 

  27. Carrasco L, Díez S, Soto DX, Catalan J, Bayona JM (2008) Sci Total Environ 407:178

    Article  CAS  Google Scholar 

  28. Lepom P, Irmer U, Wellmitz J (2012) Chemosphere 86:202

    Article  CAS  Google Scholar 

  29. Zuykov M, Pelletier E, Rouleau C, Popov L, Fowler SW, Orlova M (2009) Microchim Acta 167:173

    Article  CAS  Google Scholar 

  30. Haridasan PP, Paul AC, Desai MVM (2001) J Environ Radioact 53:155

    Article  CAS  Google Scholar 

  31. Vallés I (1994) PhD thesis, Departament de Química Analítica, Universitat de Barcelona, Barcelona

  32. U. S. Environmental Protection Agency (EPA) (1996) Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices

  33. Soudek P, Petřík P, Vágner M, Tykva R, Plojhar V, Petrová Š, Vanêk T (2007) Eur J Soil Biol 43:251

    Article  CAS  Google Scholar 

  34. García-Talavera M, Matarranz JLM, Salas R, Ramos L (2011) J Environ Radioact 102:1

    Article  Google Scholar 

  35. Brenner M, Smoak JM, Leeper DA, Streubert M, Baker SM (2007) Limnol Oceanogr 52:1614

    Article  CAS  Google Scholar 

  36. Cuculić V, Cukrov N, Bariŝić D, Malakar M (2006) J Environ Radioact 85:59

    Article  Google Scholar 

  37. Barisic D, Kniewald G (2004) In: Briand F (ed.) Rapp. 37 Congress CIESM, Barcelona, p 170

Download references

Acknowledgments

The authors are greatly indebted to the Consorci d’Aigües de Tarragona (CAT) for their invaluable collaboration. This study was financially supported by the General Research Directorate of the Spanish Ministry of Science and Technology, project CTM2011-28765-C02-01, and by Generalitat de Catalunya, Departament d’Innovació, Universitats i Empresa through project 2009 SGR 223. Last but not least, we also appreciate the cooperation of the Sebes Nature Reserve and Flix Meander.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mola, M., Palomo, M., Peñalver, A. et al. Radionuclides in biota collected near a dicalcium phosphate plant, southern Catalonia, Spain. J Radioanal Nucl Chem 298, 2017–2024 (2013). https://doi.org/10.1007/s10967-013-2690-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2690-9

Keywords

Navigation