Skip to main content
Log in

Removal of Th4+ ions from aqueous solutions by graphene oxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The removal of Th4+ ions from aqueous solutions was investigated using single-layer graphene oxide (GO) as a sorbent which was prepared by the modified Hummers’ method through batch adsorption experiments at room temperature. Structural characterizations of the sorbent were also investigated. The influences of the pH value of solution, contact time, sorbent dose, ionic strength, the initial metal ion concentration and temperature on the adsorption of Th4+ were also investigated. These results indicated that the adsorption of Th4+ was dependent on the pH and independent on the ionic strength. The sorbent provided significant Th4+ removal (>98.7 %) at pH 3.0 and the adsorption equilibrium was achieved after only 10 min. The Langmuir adsorption isotherm fit the absorption profile very closely, and indicated that a maximum adsorption capacity of 1.77 mmol g−1 of GO (411 mg g−1) after 2 h. The thermodynamic parameters showed that this adsorption process was endothermic and spontaneous. Moreover, the desorption level of Th4+ from GO, by using 0.1 mol L−1 H2SO4 as a stripping agent, was 84.2 ± 1.2 %, and that of 0.5 mol L−1 HNO3 as a stripping agent, was 79.8 ± 3.0 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Humelnicu D, Dinu MV, Drăgan ES (2011) J Hazard Mater 185:447–455

    Article  CAS  Google Scholar 

  2. Khazaei Y, Faghihian H, Kamali M (2011) J Radioanal Nucl Chem 289:529–536

    Article  CAS  Google Scholar 

  3. Bozkurt SS, Molu ZB, Cavas L, Merdivan M (2011) J Radioanal Nucl Chem 288:867–874

    Article  CAS  Google Scholar 

  4. Peters MW, Werner EJ, Scott MJ (2002) Inorg Chem 41:1707–1716

    Article  CAS  Google Scholar 

  5. Chen C, Li X, Zhao D, Tan X, Wang X (2007) Colloid Surf A 302:449–454

    Article  CAS  Google Scholar 

  6. Anirudhan TS, Suchithra PS, Senan P, Tharun AR (2012) Ind Eng Chem Res 51:4825–4836

    Article  CAS  Google Scholar 

  7. Sharma P, Singh G, Tomar R (2009) J Colloid Interface Sci 332:298–308

    Article  CAS  Google Scholar 

  8. Humelnicu D, Bulgariu L, Macoveanu M (2010) J Hazard Mater 174:782–787

    Article  CAS  Google Scholar 

  9. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) J Environ Radioact 116:141–147

    Article  CAS  Google Scholar 

  10. Tan X, Wang X, Fang M, Chen C (2007) Colloid Surf A 296:109–116

    Article  CAS  Google Scholar 

  11. Wang YQ, Zhang ZB, Li Q, Liu YH (2012) J Radioanal Nucl Chem 293:519–528

    Article  CAS  Google Scholar 

  12. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  13. Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) J Colloid Interface Sci 351:122–127

    Article  CAS  Google Scholar 

  14. Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011) Dalton Trans 40:10945–10952

    Article  CAS  Google Scholar 

  15. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  16. Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Environ Sci Technol 46:6020–6027

    Article  CAS  Google Scholar 

  17. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  18. Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) ACS Appl Mater Interface 4:1186–1193

    Article  CAS  Google Scholar 

  19. Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  20. Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, Lee S (2010) Carbon 48:2282–2289

    Article  CAS  Google Scholar 

  21. Chen C, Yang QH, Yang Y, Lv W, Wen Y, Hou PX, Wang M, Cheng HM (2009) Adv Mater 21:3007–3011

    Article  CAS  Google Scholar 

  22. Sun L, Yu H, Fugetsu B (2012) J Hazard Mater 203–204:101–110

    Article  Google Scholar 

  23. Xu Y, Bai H, Lu G, Li C, Shi G (2008) J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  24. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  25. Mi X, Huang G, Xie W, Wang W, Liu Y, Cao J (2012) Carbon 50:4856–4864

    Article  CAS  Google Scholar 

  26. Guo P, Jia X, Duan T, Xu J, Chen H (2010) J Environ Radioact 101:767–772

    Article  CAS  Google Scholar 

  27. Özcan A, Öncü EM, Özcan AS (2006) Colloid Surf A 277:90–97

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the International Collaboration Project of Science and Technology Program of Sichuan Province, China (Project no. 2010HH0008), the National Fund for Fostering Talents of Basic Science (J1210004), the Science and Technology Fund of CAEP (2011B0302052) and the National Natural Science Foundations of China (91023037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruibing Wang, Yongdong Jin or Chuanqin Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, N., Guan, D., He, T. et al. Removal of Th4+ ions from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 298, 1999–2008 (2013). https://doi.org/10.1007/s10967-013-2660-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2660-2

Keywords

Navigation