Skip to main content
Log in

Multivariate analysis applied to some elements in human fluids and whole bloods of hemodialysis patients determined by INAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This research is a framework of a big project aimed to the knowledge of human metabolism in hemodialysis patients. For reaching high sensitivity and obtaining accurate values for elements at very low concentrations Instrumental neutron activation analysis (INAA) was used for its characteristics to be a primary analytical method and because it does not require any chemical–physical pretreatment. The samples analyzed (160) are representative of groups of homogeneous population and specific matrices (hemodialysis fluids and whole human blood). The irradiation was performed in the rotating rack (Lazy Susan) of the Triga Mark II reactor of the R.C. Casaccia-ENEA at a neutron flux of 2.6 × 1012 n cm−2 s−1 with an irradiation time of 12 h. The results on the hemodialysis fluids report the values and the behavior of selected trace elements: the levels of Br and Na show a decrease between the pre- and post-dialysis whereas Fe, K and Zn an increase. The other elements such as Cs, Rb and Se seem to keep constant between the two phases. Similar data are found for the whole human blood for the same selected elements. Finally, exploiting the INAA peculiarity it has been investigated the levels of trace and ultra-trace elements interesting from a toxicological (Hg, Ni, Sb) and nutritional (Co, Cr) point of view and seldom determined due to their analytical implications. Finally, a chemiometric investigation performed through dendrogram trees, Canonical discriminant analysis and principal component analysis, has evidenced the similar effects of the HF, HDF and BIC-treatments on the investigated fluids respect to the CAPD dialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, Thadhani R, Gill J (2009) Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Medicine 7:25–37

    Article  Google Scholar 

  2. D’Haese PC, De Broe ME (1996) Adequacy of dialysis: trace elements in dialysis fluids. Nephrol Dial Transplant 11:92–97

    Article  Google Scholar 

  3. Wills MR, Savory J (1985) Water content of aluminium, dialysis dementia, and osteomalacia. Environ Health Persp 63:141–147

    Article  CAS  Google Scholar 

  4. Blasi P, Capannesi G, Cecchi A, Lucarelli F, Sedda FA (1990) An application of INAA and PIXE on the analysis of nutritional and toxicological elements in samples of drinkable water. Biol Trace Element Res 26:363–375

    Article  Google Scholar 

  5. Saint-Georges, Bonnefont DJ, Bourely BA, Jaudon M-CT, Cereze P, Chaumeil P, Gard C, D’Auzac CL (1989) Correction of selenium deficiency in hemodialyzed patients. Kidney Int 36:S274–S277

    Google Scholar 

  6. Zima T, Tesar V, Mestek O, Nemecek K (1999) Trace elements in endstage renal disease. 2. Clinical implication of trace elements. Blood Purif 17:187–198

    Article  CAS  Google Scholar 

  7. Zima T, Mestek O, Nemecek K, Bartova V, Fialova J, Tesar V, Suchanek M (1998) Trace elements in hemodialysis and continuous ambulatory peritoneal dialysis patients. Blood Purif 16:253–260

    Article  CAS  Google Scholar 

  8. Shrimpton R, Gross R, Hill I, Young M (2005) Zinc deficiency: what are the most appropriate interventions? BMJ 330:347–349

    Article  Google Scholar 

  9. Prasad AS (1988) Zinc in growth and development and spectrum of human zinc deficiency. J Am Coll Nutr 7:377–384

    Article  CAS  Google Scholar 

  10. Burk RF (1978) Selenium in nutrition. World Rev Nutr Diet 30:88–106

    CAS  Google Scholar 

  11. Ge K, Xue A, Bai J, Wang S (1983) Keshan disease—an endemic cardiomyopathy in China. Virchows Arch A 401:1–15

    Article  CAS  Google Scholar 

  12. Salonen JT, Alfthan G, Huttunen JK, Pikkarainen J, Puska P (1982) Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet 2:175–179

    Article  CAS  Google Scholar 

  13. Suadicani P, Hein HO, Gyntelberg F (1992) Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3,000 males. Atherosclerosis 96:33–42

    Article  CAS  Google Scholar 

  14. Moore JA, Noiva R, Wells IC (1984) Selenium concentrations in plasma of patients with arteriographically defined coronary atherosclerosis. Clin Chem 30:1171–1173

    CAS  Google Scholar 

  15. Alfrey AC, Smythe WR (1979) Trace element abnormalities in chronic uremia. Proc. of 12th Contractors Conf. Artificial Kidney Program, Bethesda, National Institutes of Health, DHEW, 32–36 1979

  16. Sandstead HH (1980) Trace elements in uremia and haemodialysis. Am J Clin Nutr 33:1501–1508

    CAS  Google Scholar 

  17. Campanella L, Crescentini G, Avino P, Moauro A (1998) Determination of macrominerals and trace elements in the alga Spirulina platensis. Analusis 26:210–214

    Article  CAS  Google Scholar 

  18. Campanella L, Crescentini G, Avino P (1999) Chemical composition and nutritional evaluation of some natural and commercial food products based on Spirulina. Analusis 27:533–540

    Article  Google Scholar 

  19. Avino P, Carconi PL, Lepore L, Moauro A (2000) Nutritional and environmental properties of algal products used in healthy diet by INAA and ICP-AES. J Radioanal Nuclear Chem 244:247–252

    Article  CAS  Google Scholar 

  20. Avino P, Capannesi G, Rosada A (2006) Characterization and distribution of mineral content in fine and coarse airborne particle fractions by neutron activation analysis. Toxicol Environ Chem 88:633–647

    Article  CAS  Google Scholar 

  21. Avino P, Capannesi G, Rosada A (2008) Heavy metal determination in atmospheric particulate matter by instrumental neutron activation analysis. Microchem J 88:97–106

    Article  CAS  Google Scholar 

  22. Seccaroni C, Volante N, Rosada A, Ambrosone L, Bufalo G, Avino P (2008) Identification of provenance of obsidian samples analyzing elemental composition by INAA. J Radioanal Nuclear Chem 278:277–282

    Article  CAS  Google Scholar 

  23. Capannesi G, Diaco L, Rosada A, Avino P (2008) Investigation of trace and ultra-trace elements of nutritional and toxicological significance in Italian potable waters by INAA. J Radioanal Nuclear Chem 278:353–357

    Article  CAS  Google Scholar 

  24. Capannesi G, Rosada A, Avino P (2009) Elemental characterization of impurities at trace and ultra-trace levels in metallurgical lead samples by INAA. Microchem J 93:188–194

    Article  CAS  Google Scholar 

  25. Avino P, Capannesi G, Diaco L, Rosada A (2010) Multivariate analysis applied to trace and ultra-trace elements in Italian potable waters determined by INAA. Curr Anal Chem 6:26–36

    Article  CAS  Google Scholar 

  26. Capannesi G, Rosada A, Avino P (2010) Radiochemical separation and anti-compton analysis of Ni, Sn, Te and Zn in lead standard reference materials at ultra-trace levels. Curr Anal Chem 6:217–222

    Article  CAS  Google Scholar 

  27. Capannesi G, Vicini C, Rosada A, Avino P (2010) Characterization of a suspect nuclear fuel rod in a case of illegal international traffic of fissile material. Forensic Sci Inter 199:e15–e21

    Article  CAS  Google Scholar 

  28. Avino P, Capannesi G, Rosada A (2011) Ultra-trace nutritional and toxicological elements in Rome and Florence drinking waters determined by instrumental neutron activation analysis. Microchem J 97:144–153

    Article  CAS  Google Scholar 

  29. Avino P, Santoro E, Sarto F, Violante V, Rosada A (2011) Neutron activation analysis for investigating purity grade of copper, nickel and palladium thin films used in cold fusion experiments. J Radioanal Nuclear Chem 290:427–436

    Article  CAS  Google Scholar 

  30. Avino P, Capannesi G, Manigrasso M, Sabbioni E, Rosada A (2011) Element assessment in whole blood, serum and urine of three Italian healthy sub-populations by INAA. Microchem J 99:548–555

    Article  CAS  Google Scholar 

  31. Capannesi G, Rosada A, Manigrasso M, Avino P (2011) Rare earth elements, thorium and uranium in ores of the North-Latium (Italy). J Radioanal Nuclear Chem 291:163–168

    Article  Google Scholar 

  32. Avino P, Capannesi G, Renzi L, Rosada A (2013) Instrumental neutron activation analysis and statistical approach for determining baseline values of essential and toxic elements in hairs of high school students. Ecotox Environ Safe 92:206–214

    Article  CAS  Google Scholar 

  33. Feriani M (2003) Acid-base homeostasis with the high convective dialysis treatments. Nephrol Dial Transplant 18:26–30

    Article  Google Scholar 

  34. Smodiš B, Bleise A (2007) IAEA quality control study on determining trace elements in biological matrices for air pollution research. J Radioanal Nuclear Chem 271:269–274

    Article  Google Scholar 

  35. Wilhelm M, Hanewinckel B, Bliiker F (1986) Influence of haemodialysis and renal transplantation on trace element concentrations in children with chronic renal failure. Eur J Pediatr 145:372–376

    Article  Google Scholar 

  36. Padovese P, Gallieni M, Brancaccio D, Pietra R, Fortaner S, Sabbioni E, Minoia C, Markakis K, Berlin A (1992) Trace elements in dialysis fluids and assessment of the exposure of patients on regular hemodialysis, hemofiltration and continuous ambulatory peritoneal dialysis. Nephron 61:442–448

    Article  CAS  Google Scholar 

  37. Huang C–C, Yang M-H (1997) Automated on-line sample pretreatment system for the determination of trace metals in biological samples by inductively coupled plasma mass spectrometry. Anal Chem 69:3930–3939

    Article  CAS  Google Scholar 

  38. Graf H, Stummvoll HK, Meisinger V, Kovarik J, Wolf A, Pinggera WF (1979) Aluminium in haemodialysis. Lancet 1:379

    Article  CAS  Google Scholar 

  39. Yokel RA (2000) The toxicology of aluminum in the brain: a review. NeuroToxicol 21:813–828

    CAS  Google Scholar 

  40. Rangasami M, Rajendran T, Chakko J (2012) Aluminium exposure in haemodialysis and peritoneal dialysis patients: experience of a single centre. Brunei Int Med J 8:173–178

    Google Scholar 

  41. EC, Directive related with quality of water intended for human consumption, 98/83/EC, Decreto Legislativo 2 febbraio 2001, n. 31 “Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano”. Gazzetta Ufficiale n. 52 del 3 marzo 2001—Supplemento Ordinario n. 41, 1998

  42. Hohnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice-Hill, Upper Saddle River

    Google Scholar 

  43. Escofier B, Pagès J (1988) Analyses factorielles multiples. Dunod, Paris

    Google Scholar 

  44. http://chirouble.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html. Accessed 22 March 2013

Download references

Acknowledgments

This research was performed under the Grant no. 15903-2000-04 FIED ISP IT funded by the European Union. This study was also supported by INAIL under Grants P20L09 and P20L01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Avino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avino, P., Capannesi, G., Rosada, A. et al. Multivariate analysis applied to some elements in human fluids and whole bloods of hemodialysis patients determined by INAA. J Radioanal Nucl Chem 298, 1957–1968 (2013). https://doi.org/10.1007/s10967-013-2601-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2601-0

Keywords

Navigation