Skip to main content
Log in

Pre-concentration of short-lived radionuclides using manganese dioxide precipitation from surface waters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Rapid determination of 222Rn and 220Rn progeny (214Pb, 212Pb, 214Bi, 212Bi) is achievable using manganese dioxide (MnO2) precipitation with analysis by γ-spectrometry. This is of interest to environmental monitoring programmes that utilise gross activity methods to screen for anthropogenic radionuclides. The contribution from these naturally occurring radionuclides (NOR) varies, and is difficult to experimentally measure due to short half-lives (t ½ = 19.9 m–10.64 h) and low environmental activity (<0.1 Bq L−1). The extraction efficiency of the technique is above 90%, and above 80% for other nuclides (232Th, 238U, 235U, 228Ac, 226Ra, 224Ra, 210Pb, 54Mn). Short-lived NOR have been measured at two surface water locations, and indicates elevated 214Bi activity of 4.0 ± 1.1 Bq L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burnett JL, Croudace IW, Warwick PE (2011) Variations in the gross alpha and beta activity in surface waters at the Atomic Weapons Establishment Aldermaston (UK). J Radioanal Nucl Chem 289(2):389–394

    Article  CAS  Google Scholar 

  2. Burnett JL, Croudace IW, Warwick PE (2010) Short-lived variations in the background gamma-radiation dose. J Radiol Prot 30(3):525–533

    Article  CAS  Google Scholar 

  3. Burnett JL, Croudace IW, Warwick PE (2011) Pre-concentration of naturally occurring radionuclides and the determination of 212Pb from fresh waters. J Environ Radioact 102(4):326–330

    Article  CAS  Google Scholar 

  4. Lenoble V, Chabroullet C, Shukry R, Serpaud B, Deluchat V, Bollinger JC (2004) Dynamic arsenic removal on a MnO2-loaded resin. J Colloid Interf Sci 280(1):62–67

    Article  CAS  Google Scholar 

  5. Moon DS, Burnett WC, Nour S, Horwitz P, Bond A (2003) Preconcentration of radium isotopes from natural waters using MnO2. Resin Appl Radiat Isot 59(4):255–262

    Article  CAS  Google Scholar 

  6. Maxwell SL (2006) Rapid method for 226Ra and 228Ra analysis in water samples. J Radioanal Nucl Chem 270(3):651–655

    Article  CAS  Google Scholar 

  7. Rao S, Leskshmi R, Mani A, Sinha P (2010) Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam. J Radioanal Nucl Chem 283(2):379–384

    Article  CAS  Google Scholar 

  8. Norisuye K, Okamura K, Sohrin Y, Hasegawa H, Nakanishi T (2005) Large volume preconcentration and purification for determining the 240Pu/239Pu isotopic ratio and 238Pu/239+240Pu alpha-activity ratio in seawater. J Radioanal Nucl Chem 267(1):183–193

    Article  Google Scholar 

  9. Moore WS (1976) Sampling 228Ra in the deep ocean. Deep Sea Res 23(7):647–651

    CAS  Google Scholar 

  10. Reid DF, Key RM, Schink DR (1979) Radium, thorium, and actinium extraction from seawater using an improved manganese-oxide-coated fiber. Earth Planet Sci Lett 43(2):223–226

    Article  CAS  Google Scholar 

  11. Crespo MT, Gascon JL, Acena ML (1993) Techniques and analytical methods in the determination of uranium, thorium, plutonium, americium and radium by adsorption on manganese dioxide. Sci Total Environ 130–131:383–391

    Google Scholar 

  12. Moore WS (1996) Large ground water inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614

    Article  CAS  Google Scholar 

  13. Gascon J, Crespo M, Aceña M (1990) Study of the adsorption of americium on manganese-dioxide-impregnated filters. J Radioanal Nucl Chem 146(1):67–73

    Article  CAS  Google Scholar 

  14. Wong K, Brown G, Noshkin V (1978) A rapid procedure for plutonium separation in large volumes of fresh and saline water by manganese dioxide coprecipitation. J Radioanal Nucl Chem 42(1):7–15

    Article  CAS  Google Scholar 

  15. Yepimakhov V, Glushkov S (1998) Determination of U, Pu, Am and Cm in water coolant of nuclear power plants using membranes impregnated with hydrated manganese dioxide. J Radioanal Nucl Chem 232(1):163–166

    Article  CAS  Google Scholar 

  16. Gascón J, Crespo M, Aceña M (1990) Anomalies in thorium adsorption on manganese dioxide. J Radioanal Nucl Chem 139(2):249–254

    Article  Google Scholar 

  17. Towler PH, Smith JD, Dixon DR (1996) Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite. Anal Chim Acta 328(1):53–59

    Article  CAS  Google Scholar 

  18. Zou W, Zhao L, Han R (2011) Adsorption characteristics of uranyl ions by manganese oxide coated sand in batch mode. J Radioanal Nucl Chem 288(1):239–249

    Article  CAS  Google Scholar 

  19. Surbeck H (2000) Alpha spectrometry sample preparation using selectively adsorbing thin films. Appl Radiat Isot 53(1–2):97–100

    Article  CAS  Google Scholar 

  20. Eikenberg J, Tricca A, Vezzu G, Bajo S, Ruethi M, Surbeck H (2001) Determination of 228Ra, 226Ra and 224Ra in natural water via adsorption on MnO2-coated discs. J Environ Radioactiv 54(1):109–131

    Article  CAS  Google Scholar 

  21. Bojanowski R, Fukai R, Ballestra S, Asari H (1977) Determination of natural radioactive elements in marine environmental materials by ion-exchange and alpha spectrometry. IAEA 74:1–13

    Google Scholar 

  22. La Rosa J, Burnett W, Lee S, Levy I, Gastaud J, Povinec P (2001) Separation of actinides, cesium and strontium from marine samples using extraction chromatography and sorbents. J Radioanal Nucl Chem 248(3):765–770

    Article  CAS  Google Scholar 

  23. Burns K (2005) Determination of radium and uranium isotopes in natural waters by sorption on hydrous manganese dioxide followed by alpha-spectrometry. J Radioanal Nucl Chem 264(2):437–443

    Article  CAS  Google Scholar 

  24. Hasany S, Chaudhary M (1984) Adsorption behaviour of microamounts of cesium on manganese dioxide. J Radioanal Nucl Chem 84(2):247–256

    Article  CAS  Google Scholar 

  25. Ghoneimy H (1997) Adsorption of Co2+ and Zn2+ on cryptomelane-type hydrous managese dioxide. J Radioanal Nucl Chem 223(1):61–65

    Article  CAS  Google Scholar 

  26. Tait D, Haase G, Wiechen A (1994) Separation of Ba and Pb from aqueous solutions of Sr with commercially available “precipitated active manganese dioxide”. J Radioanal Nucl Chem 186(1):1–8

    Article  CAS  Google Scholar 

  27. Tonkin JW, Balistrieri LS, Murray JW (2004) Modelling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl Geochem 19(1):29–53

    Article  CAS  Google Scholar 

  28. Murray JW, Dillard JG (1979) The oxidation of cobalt(II) adsorbed on manganese dioxide. Geochim Cosmochim Ac 43(5):781–787

    Article  CAS  Google Scholar 

  29. Suib SL, Carrado KA (1985) Zeolite photochemistry: energy transfer between rare-earth and actinide ions in zeolites. Inorg Chem 24:200–202

    Article  CAS  Google Scholar 

  30. McKenzie RM (1979) Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochim Cosmochim Ac 43:1855–1857

    Article  CAS  Google Scholar 

  31. Arafa MA, Yousef AA, Malati MA (1974) Adsorption of barium ions by [beta]-manganese dioxide and its activation in oleate flotation. Int J Miner Process 1(3):267–275

    Article  CAS  Google Scholar 

  32. Philipsborn H (1997) Efficient adsorption of waterborne short-lived radon decay products by glass fiber filters. Health Phys 72(2):277–281

    Article  Google Scholar 

  33. Read D and Beddow H (2005) Detection of solvent plumes using soil gas radon (Aldermaston, UK: Atomic Weapons Establishment) Report EP/2005/01

  34. Takeyasu M, Onuma T, Takeishi M (2010) Determination of the variation of environmental radiation due to the ground deposition of atmospheric 222Rn decay products during rainfall: utilization of the correlation between the variations observed at neighbouring monitoring posts. J Radioanal Nucl Chem 284(3):635–639

    Article  CAS  Google Scholar 

  35. Santschi HP, Honeyman BD (1989) Radionuclides in aquatic environments. Radiat Phys chem 34(2):213–240

    CAS  Google Scholar 

  36. Green BMR, Lomas PR, Bradley EJ and Wrixon AD (1989) Gamma-radiation levels outdoors in Great Britain. Report NRPB-R191. National Radiological Protection Board, Chilton

  37. Wollenberg HA, Smith RA (1990) A geochemical assessment of terrestrial gamma ray absorbed dose rates. Health Phys 58(2):183–189

    Article  CAS  Google Scholar 

  38. Tso MW, Li CC (1992) Terrestrial gamma radiation dose in Hong-Kong. Health Phys 62(1):71–81

    Article  Google Scholar 

  39. Jibiri NN (2001) Assessment of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria. Environ Int 27(1):21–26

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thank you to the AWE Technical Outreach Programme for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Burnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, J.L., Croudace, I.W. & Warwick, P.E. Pre-concentration of short-lived radionuclides using manganese dioxide precipitation from surface waters. J Radioanal Nucl Chem 292, 25–28 (2012). https://doi.org/10.1007/s10967-011-1392-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1392-4

Keywords

Navigation