Skip to main content
Log in

Removal of thorium from aqueous solutions by sodium clinoptilolite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Adsorptive behavior of natural clinoptilolite was assessed for removal of thorium from aqueous solutions. Natural zeolite was characterized by X-ray diffraction and X-ray fluorescence. The zeolite sample composed mainly of clinoptilolite. Na-exchanged form of zeolite was prepared and its sorption capacity for removal of thorium from aqueous solutions was examined. The effects of relevant parameters, including initial concentration, contact time, solid to liquid ratio, temperature and initial pH on the removal efficiency were investigated in batch studies. The pH strongly influenced thorium adsorption capacity and maximal capacity was obtained at pH 4.0. Kinetics and isotherm of adsorption were also studied. The pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion models were used to describe the kinetic data. The pseudo-second-order kinetic model provided excellent kinetic data fitting (R 2 > 0.999) with rate constant of 1.25, 1.37 and 1.44 g mmol−1 min−1 respectively for 25, 40 and 55 °C. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms for thorium uptake and the Langmuir model agrees very well with experimental data. Thermodynamic parameters were determined and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Humeinicu D, Drochioiu G, Popa K (2004) J Radioanal Nucl Chem 260(2):291

    Article  Google Scholar 

  2. Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260(1):115

    Article  CAS  Google Scholar 

  3. Osthols E, Manccan A, Farges F, Charlet L (1997) J Colloid Interface Sci 194:10

    Article  CAS  Google Scholar 

  4. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopolou C, Oikonomou D (2003) J Hazard Mater B97:71

    Article  Google Scholar 

  5. Malekpour A, Millani MR, Kheirkhah M (2008) Desalination 225:199

    Article  CAS  Google Scholar 

  6. Breck DW (1974) Zeolite molecular sieves, structure, chemistry and use. Wiley, New York

    Google Scholar 

  7. Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London

    Google Scholar 

  8. Dyer A (1988) Zeolite molecular sieves. Wiley, Chichester

    Google Scholar 

  9. Meier WM, Olson DH (1992) Atlas of zeolite structure types. Butterworth-Heinemann, London

    Google Scholar 

  10. Gottardi G, Gali E (1985) Natural zeolites. Springer, Berlin

    Google Scholar 

  11. Tsitsishvili GV, Andronikashvili TG, Kirov GN, Filizova LD (1992) Natural zeolites. Ellis Horwood, Chichester

    Google Scholar 

  12. Tschernich R (1992) Zeolites of the world. Geoscience Press, Phoenix

    Google Scholar 

  13. Mumpton FA (1975) In Mumpton FA (ed) Mineralogy and geology of natural zeolites. MSA Short Course Notes, vol 4, p 117

  14. Mumpton FA (1987) In: Sand LB, Mumpton FA (eds) Natural zeolites. Pergamon, Oxford, p 3

    Google Scholar 

  15. Dyer A (1984) Chem Ind 2:241

    Google Scholar 

  16. Griffiths J (1987) Ind Miner 232:19

    Google Scholar 

  17. Haggerty GM, Bowman RS (1994) Environ Sci Technol 28:452

    Article  CAS  Google Scholar 

  18. Faghihian H, Kabiri-Tadi M, Ahmadi SJ (2010) J Radioanal Nucl Chem 285:499

    Article  CAS  Google Scholar 

  19. Rozmaric M, Gojmerac Ivsic A, Grahek Z (2009) Talanta 80:352

    Article  CAS  Google Scholar 

  20. Tashauoei HR, Movahedian A, Amin MM, Kamali M, Nikaeen M (2010) Int J Environ Sci Tech 7(3):497

    Google Scholar 

  21. Bundschuh T, Knopp R, Muller R, Kim JI, Neck V, Fanghannel T (2000) Radiochim Acta 88(9–11):625

    Article  CAS  Google Scholar 

  22. Ekberg C, Albinsson Y, Comarmond MJ, Brown PL (2000) J Solut Chem 29(1):63

    Article  CAS  Google Scholar 

  23. Engkvist I, Albinsson Y (1992) Radiochim Acta 58/59:109

    Google Scholar 

  24. Grenthe I, Lagerman B (1991) Acta Chem Scand 45(3):231

    Article  CAS  Google Scholar 

  25. Neck V, Kim JI (2001) Radiochim Acta 89(1):1

    Article  CAS  Google Scholar 

  26. Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousis I (1995) Sci Total Environ 173/174:237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Office of Graduate Studies of the University of Isfahan for their support. The authors thank Mrs. M. Akbari for his help in the XRD and XRF analysis in Central Laboratory of University of Isfahan, and Mr. R. Sayyari for help in the ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Faghihian or Mahdi Kamali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khazaei, Y., Faghihian, H. & Kamali, M. Removal of thorium from aqueous solutions by sodium clinoptilolite. J Radioanal Nucl Chem 289, 529–536 (2011). https://doi.org/10.1007/s10967-011-1100-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1100-4

Keywords

Navigation