Skip to main content
Log in

Kinetic, thermodynamic and equilibrium studies on the removal of copper ions from aqueous solutions by natural and modified clinoptilolites

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the adsorption of Cu(II) ions from aqueous solution on Na and Fe-modified clinoptilolite. The copper adsorption experiments were performed in a batch system considering an optimum contact time of 24 h. Changes in the surfaces and structure were characterized by SEM data. According to the SEM results, it was anticipated that the removal efficiency of Fe-modified clinoptilolite was the highest compared with the natural and Na-modified clinoptilolites. Adsorption of Cu(II) ions by modified clinoptilolites was investigated as a function of the initial Cu(II) concentration, solution pH, and temperature. According to the results, the maximum adsorbed Cu amount onto Fe-modified was 19.40mg/l at the optimum operating condition with a pH value of 5.5 and temperature of 60 °C. According to the thermodynamic evaluations, positive ΔS and negative ΔG were found for the adsorption process showing that the adsorption reaction is a spontaneous process and more favorable at high temperatures. Sorption data have been interpreted in terms of Langmuir and Freundlich, Temkin and Dubinin-Radushkevich. The adsorption equilibrium was best described by the Langmuir adsorption isotherm. In addition, according to the Sips model, the sorption of Cu(II) ions on the Fe-modified clinoptilolite was found to be heterogeneous. The kinetic study showed that the Fe-modified clinoptilolite followed the pseudo-second order model. The results indicated that the clinoptilolite-rich tuff in its iron oxide form could be efficiently used for the removal of copper from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011).

    Article  CAS  Google Scholar 

  2. K. Elaiopoulos, T. Perraki and E. Grigoropoulou, Micropor. Mesopor. Mater., 112, 441 (2008).

    Article  CAS  Google Scholar 

  3. G. Gottardi and E. Galli, Natural Zeolites, Berlin, Springer-Verlag (1985).

    Book  Google Scholar 

  4. F. A. Mumpton, Natural Zeolites Occurrence Properties and Use, New York, Pergamon (1976).

    Google Scholar 

  5. K. Koyama and Y. Takéuchi, J. Crystallogr., 145, 216 (1977).

    CAS  Google Scholar 

  6. W. W. Eckenfelder, Industrial Water Pollution Control, New York, McGraw-Hill (1989).

    Google Scholar 

  7. Ö. Yavuza, Y. Altunkaynakb and F. Güzel, Water Res., 37, 948 (2003).

    Article  Google Scholar 

  8. H. Cui, L. Y. Li and J. R. Grace, Water Res., 40, 3359 (2006).

    Article  CAS  Google Scholar 

  9. K. Payne and T. Abdel-Fattah, J. Environ. Sci. Health, Part A A 39, 2275 (2004).

    Article  Google Scholar 

  10. T. M. Abdel-Fattah, L. K. Isaacs and K. Payne, Federal Facilities Environ. J., 14, 113 (2003).

    Article  Google Scholar 

  11. S. Babel and T. A. Kurniawan, J. Hazard. Mater., 97, 219 (2003).

    Article  CAS  Google Scholar 

  12. K. Payne and T. M. Abdel-Fattah, J. Environ. Sci. Health, 40, 723 (2005).

    Article  CAS  Google Scholar 

  13. S. Çoruh, Desalination, 225, 41 (2008).

    Article  Google Scholar 

  14. M. Panayotova and B. Velikov, J. Environ. Sci. Health A., 37, 139 (2002).

    Article  Google Scholar 

  15. A. Arcoya, J. Gonzalez, N. Travieso and X. Seoane, Clay Minerals, 29, 123 (1994).

    Article  CAS  Google Scholar 

  16. M. Bilici Baskan and A. Pala, Desalination, 281, 396 (2011).

    Article  CAS  Google Scholar 

  17. S. A. Abdulkareem, E. Muzenda, A. S. Afolabi and J. Kabuba, Arabian J. Sci. Eng., 38, 2263 (2013).

    Article  CAS  Google Scholar 

  18. A. Dimirkou, Water Res., 41, 2763 (2007).

    Article  CAS  Google Scholar 

  19. M. K. Doula and A. Dimirkou, J. Hazard. Mater., 151, 738 (2008).

    Article  CAS  Google Scholar 

  20. A. Dimirkou, A. Ioannou and M. Doula, Adv. Colloid Interface Sci., 97, 37 (2002).

    Article  CAS  Google Scholar 

  21. Z. Li, J.-S. Jean, W.-T. Jiang, P.-H. Chang, C.-J. Chen and L. Liao, J. Hazard. Mater., 187, 318 (2011).

    Article  CAS  Google Scholar 

  22. E. Erdal, J. Hazard. Mater., 165, 63 (2009).

    Article  Google Scholar 

  23. D. K. Maria, Water Res., 40, 3167 (2006).

    Article  Google Scholar 

  24. M. K. Doula, Chemosphere, 67, 731 (2007).

    Article  CAS  Google Scholar 

  25. A. Dimirkou and M. K. Doula, Desalination, 224, 280 (2008).

    Article  CAS  Google Scholar 

  26. M. Kragovic, A. Dakovic, Ž. Sekulic, M. Trgo, M. Ugrina, J. Peric and G. D. Gatta, Appl. Surface Sci., 258, 3667 (2012).

    Article  CAS  Google Scholar 

  27. M. K. Doula, Water Res., 43, 3659 (2009).

    Article  CAS  Google Scholar 

  28. W. S. Wan Ngah, C. S. Endud and R. Mayanar, React. Funct. Polym., 50, 181 (2002).

    Article  Google Scholar 

  29. K. G. Bhattacharyya and S. S. Gupta, Sep. Purif. Technol., 50, 388 (2006).

    Article  CAS  Google Scholar 

  30. B. Acemioglu, A. Samil, M. H. Alma and R. Gundogan, J. Appl. Polym. Sci., 89, 1537 (2003).

    Article  CAS  Google Scholar 

  31. S. Larous, A. H. Meniai and M. B. Lehocine, Desalination, 185, 483 (2005).

    Article  CAS  Google Scholar 

  32. B. Concepción-Rosabal, G. Rodríguez-Fuentes, N. Bogdanchikova, P. Bosch, M. Avalos and V. H. Lara, Micropor. Mesopor. Mater., 86, 249 (2005).

    Article  Google Scholar 

  33. R. Petrus and J. WarchoÅ, Micropor. Mesopor. Mater., 61, 137 (2003).

    Article  CAS  Google Scholar 

  34. N. Lihareva, L. Dimova, O. Petrov and Y. Tzvetanova, Micropor. Mesopor. Mater., 130, 32 (2010).

    Article  CAS  Google Scholar 

  35. H. Yuh-Shan, Scientometrics, 59, 171 (2004).

    Article  Google Scholar 

  36. S. Kocaoba, Y. Orhan and T. Akyuz, Desalination, 214, 1 (2007).

    Article  CAS  Google Scholar 

  37. K. S. Hui, C. Y. H. Chao and S. C. Kot, J. Hazard. Mater., 127, 89 (2005).

    Article  CAS  Google Scholar 

  38. M. Sprynskyy, B. Buszewski, A. P. Terzyk and J. Namiesnik, J. Colloid Interface Sci., 304, 21 (2006).

    Article  CAS  Google Scholar 

  39. V. J. Inglezakis, M. D. Loizidou and H. P. Grigoropoulou, J. Colloid Interface Sci., 261, 49 (2003).

    Article  CAS  Google Scholar 

  40. E. Álvarez-Ayuso, A. García-Sánchez and X. Querol, Water Res., 37, 4855 (2003).

    Article  Google Scholar 

  41. A. H. Ören and A. Kaya, J. Hazard. Mater., 131, 59 (2006).

    Article  Google Scholar 

  42. N. Moreno, X. Querol and C. Ayora, Environ. Sci. Technol., 35, 3526 (2001).

    Article  CAS  Google Scholar 

  43. K. Gedik and I. Imamoglu, J. Hazard. Mater., 155, 385 (2008).

    Article  CAS  Google Scholar 

  44. V. J. Inglezakis, M. D. Loizidou and H. P. Grigoropoulou, Desalination, 214, 1 (2007).

    Article  Google Scholar 

  45. M. K. Doula, Water Res., 40, 3167 (2006).

    Article  CAS  Google Scholar 

  46. S. K. Ouki and M. Kavannagh, Waste Manage. Res., 15, 383 (1997).

    Article  CAS  Google Scholar 

  47. G. Eisenman, Biophysical J., 2, 259 (1962).

    Article  CAS  Google Scholar 

  48. U. Wingenfelder, B. Nowack, G. Furrer and R. Schulin, Water Res., 39, 3287 (2005).

    Article  CAS  Google Scholar 

  49. L. Curkovic, Š. Cerjan-Stefanovic and T. Filipan, Water Res., 31, 1379 (1997).

    Article  CAS  Google Scholar 

  50. V. J. Inglezakis, K. J. Hadjiandreou, M. D. Loizidou and H. P. Grigoropoulou, Water Res., 35, 2161 (2001).

    Article  CAS  Google Scholar 

  51. S. CerjanStefanovic, L. Curkovic and T. Filipan, Croat. Chem., Acta, 281 (1996).

    Google Scholar 

  52. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  53. H. Freundlich, Z. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  54. F. H. Frimmel and L. Huber, Environ. Int., 22, 507 (1996).

    Article  CAS  Google Scholar 

  55. G. McKay, M. S. Otterburn and A. G. Sweeney, Water Res., 14, 21 (1980).

    Article  CAS  Google Scholar 

  56. E. Gutiérrez-Segura, M. Solache-Ríos, A. Colín-Cruz and C. Fall, J. Environ. Manage., 97, 6 (2012).

    Article  Google Scholar 

  57. M. I. Tempkin and V. Pyzhev, Acta Phys. Chim., 12, 327 (1940).

    Google Scholar 

  58. A. Dada, A. Olalekan, A. Olatunya and O. Dada, J. Appl. Chem., 3, 38 (2012).

    Google Scholar 

  59. A. Günay, E. Arslankaya and I. Tosun, J. Hazard. Mater., 146, 362 (2007).

    Article  Google Scholar 

  60. A. Dabrowski, Adv. Colloid Interface Sci., 93, 135 (2001).

    Article  CAS  Google Scholar 

  61. J. Peric, M. Trgo and N. Vukojevic Medvidovic, Water Res., 38, 1893 (2004).

    Article  CAS  Google Scholar 

  62. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications, Academic Press (2013).

    Google Scholar 

  63. M. M. Dubinin, Chem. Rev., 60, 235 (1960).

    Article  CAS  Google Scholar 

  64. J. P. Hobson, The J. Phys. Chem., 73, 2720 (1969).

    Article  CAS  Google Scholar 

  65. F. A. Pavan, S. L. P. Dias, E. C. Lima and E. V. Benvenutti, Dyes Pigm., 76, 64 (2008).

    Article  Google Scholar 

  66. V. Vimonses, S. Lei, B. Jin, C. W. K. Chow and C. Saint, Chem. Eng. J., 148, 354 (2009).

    Article  CAS  Google Scholar 

  67. D. Georgiev, B. Bogdanov, Y. Hristov and I. Markovska, World Academy of Sci., Eng. Technol., 6, 1098 (2012).

    Google Scholar 

  68. R. Han, W. Zou, Z. Zhang, J. Shi and J. Yang, J. Hazard. Mater., 137, 384 (2006).

    Article  CAS  Google Scholar 

  69. K. K. Wong, C. K. Lee, K. S. Low and M. J. Haron, Process Biochemistry, 39, 437 (2003).

    Article  CAS  Google Scholar 

  70. F. N. Acar and Z. Eren, J. Hazard. Mater., 137, 909 (2006).

    Article  CAS  Google Scholar 

  71. M. Sciban, M. Klasnja and B. Skrbic, Wood Sci. Technol., 40, 217 (2006).

    Article  CAS  Google Scholar 

  72. S. Shukla and R. S. Pai, Sep. Purif. Technol., 43, 1 (2005).

    Article  CAS  Google Scholar 

  73. Q. Li, J. Zhai, W. Zhang, M. Wang and J. Zhou, J. Hazard. Mater., 141, 163 (2007).

    Article  CAS  Google Scholar 

  74. M. Horsfall, A. A. Abia and A. I. Spiff, Bioresour. Technol., 97, 283 (2006).

    Article  CAS  Google Scholar 

  75. S. Shukla and R. S. Pai, Bioresour. Technol., 96, 1430 (2005).

    Article  CAS  Google Scholar 

  76. N. Chubar, J. R. Carvalho and M. J. N. Correia, Colloids Surf., A: Physicochem. Eng. Aspects., 238, 51 (2004).

    Article  CAS  Google Scholar 

  77. B. Nasernejad, T. E. Zadeh, B. B. Pour, M. E. Bygi and A. Zamani, Process Biochem., 40, 1319 (2005).

    Article  CAS  Google Scholar 

  78. E. Pehlivan, S. Cetin and B. Yanik, J. Hazard. Mater., 135, 193 (2006).

    Article  CAS  Google Scholar 

  79. D. Wankasi, M. Horsfall Jnr and A. Ibuteme Spiff, Electronic J Biotechnol., 9, 587 (2006).

    Article  Google Scholar 

  80. C. Namasivayam and K. Kadirvelu, Chemosphere, 34, 377 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Irannajad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irannajad, M., Haghighi, H.K. & Safarzadeh, E. Kinetic, thermodynamic and equilibrium studies on the removal of copper ions from aqueous solutions by natural and modified clinoptilolites. Korean J. Chem. Eng. 33, 1629–1639 (2016). https://doi.org/10.1007/s11814-015-0299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0299-0

Keywords

Navigation