Skip to main content
Log in

Isomeric yield ratios in the photoproduction of 52m,gMn from natural iron using 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The isomeric yield ratios for the natFe(γ,xn1p)52m,gMn reactions have been measured by the activation and the γ-ray spectroscopic methods at 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung energies. The high purity natural iron foils in disc shape were irradiated with uncollimated bremsstrahlung beams of the Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometry with a calibrated high-purity Germanium (HPGe) detector. In order to improve the accuracy of the experimental results the necessary corrections were made in the gamma activity measurements and data analysis. The obtained isomeric yield ratios for the natFe(γ,xn1p)52m,gMn reactions at 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung energies are 0.27 ± 0.03, 0.33 ± 0.04, 0.34 ± 0.04, and 1.25 ± 0.15, respectively. The present results at 50-, 60-MeV, and 2.5-GeV bremsstrahlung energies are the first measurements. We found that the isomeric yield ratio of the natFe(γ,xn1p)52m,gMn reaction depends on the incident bremsstrahlung energy and the mass difference between the product and the target nucleus when we compared the present results with other experimental data at different energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305

    Article  CAS  Google Scholar 

  2. Vandenbosch R, Huizenga R (1960) Phys Rev 120:1313

    Article  CAS  Google Scholar 

  3. Bethe HA (1937) Rev Mod Phys 9:84

    Article  Google Scholar 

  4. Bloch C (1954) Phys Rev 93:1094

    Article  CAS  Google Scholar 

  5. Le Couteur KJ, Lang DW (1959) Nucl Phys 13:32

    Article  Google Scholar 

  6. Vanska R, Rieppo R (1981) Nucl Instrum Methods 179:525

    Article  CAS  Google Scholar 

  7. Birn IG, Strohmaier B, Freiesleben H, Qaim SM (1995) Phys Rev C 52:2546

    Article  CAS  Google Scholar 

  8. Qaim SM (1972) Nucl Phys A185:614

    Google Scholar 

  9. Qaim SM (1985) Nucl Phys A 438:384

    Article  Google Scholar 

  10. Nesaraja CD, Sudar S, Qaim SM (2003) Phys Rev C 68:024603

    Article  Google Scholar 

  11. Sarkar R, Bhoraskar VN (1992) Phys Rev C 46:2246

    Article  CAS  Google Scholar 

  12. Reyhancan IA, Bostan M, Durusoy A, Elmali A, Baykal A, Ozbir Y (2003) Ann Nucl Energy 30:1539

    Article  CAS  Google Scholar 

  13. Eriksson M, Jonsson GG (1975) Nucl Phys A 242:507

    Article  Google Scholar 

  14. Gunther W, Huber K, Kneissl U, Krieger H (1978) Nucl Phys A 297:254

    Article  Google Scholar 

  15. Lindgren K, Jonsson GG (1971) Nucl Phys A 166:643

    Article  CAS  Google Scholar 

  16. Kato T, Oka Y (1972) Talanta 19:515

    Article  CAS  Google Scholar 

  17. Henry RM, Martin DS Jr (1957) Phys Rev 107:772

    Article  CAS  Google Scholar 

  18. Walters WB, Hummel JP (1966) Phys Rev 150:867

    Article  CAS  Google Scholar 

  19. di Napoli V, Salvetti F, Terranova ML, De Carvalho HG, Martines JB, Tavares OAP (1978) J Inorg Nucl Chem 40:175

    Article  CAS  Google Scholar 

  20. Kumbartzki G, Kim U (1971) Nucl Phys A176:23

    Google Scholar 

  21. Nguyen VD, Pham DK, Kim TT, Tran DT, Phung VD, Lee YS, Kim GN, Oh Y, Lee HS, Kang H, Cho MH, Ko IS, Namkung W (2007) J Korean Phys Soc 50:417

    Article  CAS  Google Scholar 

  22. Kim GN, Lee YS, Skoy V, Kovalchuck V, Cho MH, Ko IS, Namkung W, Lee DW, Kim HD, Ro TI, Min YG (2001) J Korean Phys Soc 38:14

    CAS  Google Scholar 

  23. Kim GN, Ahmed H, Machrafi R, Son D, Skoy V, Lee YS, Kang H, Cho MH, Ko IS, Namkung W (2003) J Korean Phys Soc 42:479

    Google Scholar 

  24. Nguyen VD, Pham DK, Tran DT, Phung VD, Lee YS, Lee HS, Cho MH, Ko IS, Namkung W, Meaze AKMMH, Devan K, Kim GN (2006) J Korean Phys Soc 48:382

    CAS  Google Scholar 

  25. Lee HS, Ban S, Sato T, Shin K, Bak JS, Chung CW, Choi HD (2000) J Nucl Sci Tech S1:207

    Google Scholar 

  26. Sato T, Shin K, Yuasa R, Ban S, Lee HS (2001) Nucl Instrum Methods A 463:299

    Article  CAS  Google Scholar 

  27. Nguyen VD, Pham DK, Kim TT, Le TS, Md. S. Rahman, Kim KS, Lee M, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W (2008) Nucl Instrum Methods B 266:5080

  28. Nguyen VD, Pham DK, Kim TT, Le TS, Lee YS, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W (2008) Nucl Instrum Methods B 266:21

    Article  CAS  Google Scholar 

  29. Firestone RB, Baglin CM, Chu SYF (1999) Table of isotopes. Update on CD Rom, 8th edn. Wiley-Interscience, New York

    Google Scholar 

  30. Debertin K, Heimer RG (1988) Gamma and X-ray spectrometry with semiconductor detectors. North Holland Elsevier, New York

    Google Scholar 

  31. de Bruin M, Korthoven PJM (1974) Radiochem Radioanal Lett 19:153

    Google Scholar 

  32. Nguyen VD, Pham DK, Kim TT, Le TS, Kim GN, Lee YS, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W (2008) Nucl Instrum Methods B 266:863

    Article  CAS  Google Scholar 

  33. Walters WB, Van Hise JR, Switzer WL, Hummel JP (1970) Nucl Phys A 157:73

    Article  CAS  Google Scholar 

  34. Danagulyan AS, Demekhina NA, Vartapetyan GA (1977) Nucl Phys A 285:482

    Article  Google Scholar 

  35. Bachschi NM, David P, Debrus J, Lubke F, Mommsen H, Schoenmackers R, Jonsson GG, Lindgren K (1976) Nucl Phys A 264:493

    Article  Google Scholar 

  36. Sarkar SR, Soto M, Kubota Y, Yoshida M, Fukasawa T, Matsumoto M, Kawaguchi K, Sakamoto K, Shibata S, Furukawa M, Fujiwara I (1991) Radiochim Acta 55:113

    CAS  Google Scholar 

  37. Nguyen VD et al (2010) to be published

Download references

Acknowledgements

The authors would like to express their sincere thanks to the staffs of Pohang Accelerator Laboratory for excellent operation of the electron linac and their strong support. This work was supported by the Korea Science and Engineering Foundation (KOSEF) through a grant provided by the Korean Ministry of Education, Science and Technology (MEST) in 2008 (Project No. M2 08B090010810), by the Institutional Activity Program of Korea Atomic Research Institute, and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, V.D., Pham, D.K., Kim, T.T. et al. Isomeric yield ratios in the photoproduction of 52m,gMn from natural iron using 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung. J Radioanal Nucl Chem 283, 683–690 (2010). https://doi.org/10.1007/s10967-009-0402-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0402-2

Keywords

Navigation