Skip to main content
Log in

Neutron energy spectrum determination and flux measurement using MAXED, GRAVEL, and MCNP for RACE experiments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Stainless steel flux wires were used to determine the neutron energy spectra and total flux during the Reactor Accelerator Coupling Experiments (RACE) at The University of Texas at Austin. A LINAC electron accelerator produced 20 MeV electrons at a power of 1.6 kW, which struck a tungsten-copper target to produce bremsstrahlung radiation and photoneutrons. The neutrons produced in the target were multiplied by the subcritical core of a Triga reactor. The purpose of the RACE experiments is to develop a sub-critical accelerator driven system that would be capable of transmuting actinides from spent fuel. Flux measurements were made with 1.58 mm diameter stainless steel wires placed throughout the core between the fuel rods and cadmium covered and uncovered gold and indium foils above the target. The MAXED and GRAVEL computer codes were used to perform the spectrum unfolding. The composition of the stainless steel wires was determined using neutron activation analysis with comparators prior to the flux measurement. The reactions measured in the stainless steel to determine the flux were 50Cr(n,γ)51Cr, 58Ni(n,p)58Co, 54Fe(n,p)54Mn, and 58Fe(n,γ)59Fe. Flux measurements agreed well with an MCNP simulation of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Abderrahim et al., Radiat. Prot. Dosim., 116 (2005) 433.

    Article  CAS  Google Scholar 

  2. A. C. Mueller, Nucl. Phys., 751 (2005) 453c.

    Article  CAS  Google Scholar 

  3. M. Plaschy et al., Annals Nucl. Energy, 32 (2005) 843.

    Article  CAS  Google Scholar 

  4. T. Sasa, Progr. Nucl. Energy, 47 (2005) 314.

    Article  CAS  Google Scholar 

  5. A. Brolly, P. Vertes, Acta Phys. Hung. New Series — Heavy Ion Physics, 19 (2004) 263.

    Article  CAS  Google Scholar 

  6. A. Brolly, P. Vertes, Annals Nucl. Energy, 31 (2004) 585.

    Article  CAS  Google Scholar 

  7. J. Wallenius, M. Eriksson, Nucl. Technol., 152 (2005) 367.

    CAS  Google Scholar 

  8. M. Reginatto, P. Goldhagen, Health Phys, 77 (1999) 579.

    Article  CAS  Google Scholar 

  9. K. Kudo et al., Nucl. Instr. Meth. Phys. Res., 476 (2002) 213.

    Article  CAS  Google Scholar 

  10. D. D. Soete, Neutron Activation Analysis, Wiley-Interscience, London, 1972.

    Google Scholar 

  11. D. K. Mohapatra, P. Mohanakrishnan, Appl. Radiation Isotopes, 57 (2002) 25.

    Article  CAS  Google Scholar 

  12. M. Tombakoglu, Y. Cecen, Burnup dependent core neutronic calculation for research and training reactors via SCALE4.4, in: Intern. Conf. Nuclear Energy in Central Europe, Portoroz, Slovenia, 2001.

  13. A. Corana et al., ACM Trans. Mathemat. Software, 13 (1987) 262.

    Article  Google Scholar 

  14. S. R. Malkawi, N. Ahmad, Annals Nucl. Energy, 27 (2000) 311.

    Article  CAS  Google Scholar 

  15. A. Seghour, F. Z. Seghour, Nucl. Instr. Meth. Phys. Res., 555 (2005) 347.

    Article  CAS  Google Scholar 

  16. R. Soule et al., Nucl. Sci. Eng., 148 (2004) 124.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, T., Biegalski, S., O’Kelly, S. et al. Neutron energy spectrum determination and flux measurement using MAXED, GRAVEL, and MCNP for RACE experiments. J Radioanal Nucl Chem 276, 279–284 (2008). https://doi.org/10.1007/s10967-007-0446-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-0446-0

Keywords

Navigation