Skip to main content

Advertisement

Log in

High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Colonna et al., Energy Environ. Sci. 3, 1910 (2010)

    Article  Google Scholar 

  2. OECD/NEA WPEC Subgroup 26 Final Report, Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations, NEA No. 6410 (2008), http://www.nea.fr/html/science/wpec/volume26

  3. G. Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997)

    Article  ADS  Google Scholar 

  4. F. Käppeler, R. Gallino, S. Bisterzo, Wako Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  5. I. Porras et al., Nucl. Data Sheets 120, 246 (2014)

    Article  ADS  Google Scholar 

  6. M. Sabaté-Gilarte et al., Rep. Pract. Oncol. Radiother. 21, 113 (2016)

    Article  Google Scholar 

  7. C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)

    Article  ADS  Google Scholar 

  8. C. Weiss et al., Nucl. Instrum. Methods A 799, 90 (2015)

    Article  ADS  Google Scholar 

  9. S. Barros et al., J. Instrum. 10, 09003 (2015)

    Article  Google Scholar 

  10. M. Barbagallo et al., Phys. Rev. Lett. 117, 152701 (2016)

    Article  ADS  Google Scholar 

  11. ICRU, International Commission on Radiation Units and Measurements, report 60, issue 30, December 1998

  12. M. Barbagallo et al., Eur. Phys. J. A 49, 156 (2013)

    Article  ADS  Google Scholar 

  13. A.D. Carlson et al., Nucl. Data Sheets 110, 3215 (2009)

    Article  ADS  Google Scholar 

  14. A.D. Carlson, Metrologia 48, S328 (2011)

    Article  ADS  Google Scholar 

  15. L. Cosentino et al., Rev. Sci. Instrum. 86, 073509 (2015)

    Article  ADS  Google Scholar 

  16. S. Marrone et al., Nucl. Instrum. Methods A 517, 389 (2004)

    Article  ADS  Google Scholar 

  17. I. Giomataris et al., Nucl. Instrum. Methods A 376, 29 (1996)

    Article  ADS  Google Scholar 

  18. S. Andriamonje et al., J. Korean Phys. Soc. 59, 1597 (2011)

    Article  Google Scholar 

  19. I. Giomataris, R. De Oliveira, Patent CEA-CERN, Application Number 09 290 825.0 (2009), Method for fabricating an amplification gap of an avalanche particle detector

  20. C. Paradela et al., Phys. Rev. C 82, 034601 (2010)

    Article  ADS  Google Scholar 

  21. D. Tarrío et al., Phys. Rev. C 83, 044620 (2011)

    Article  ADS  Google Scholar 

  22. D. Tarrío, Neutron-induced fission fragment angular distribution at CERN n_TOF: The Th-232 case, PhD Thesis (2012)

  23. Y.H. Chen, L. Tassan-Got, L. Audouin et al., EPJ Web of Conferences 146, 03020 (2017)

    Article  Google Scholar 

  24. P. Zugec et al., Nucl. Instrum. Methods A 812, 134 (2016)

    Article  ADS  Google Scholar 

  25. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  26. A. Fasso, Technical Report CERN-2005-10, INFN/TC_05/11, SLAC-R-73 (2005), Fluka: A multi-particle transport code

  27. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    Article  ADS  Google Scholar 

  28. J. Lerendegui et al., Eur. Phys. J. A 52, 100 (2016)

    Article  ADS  Google Scholar 

  29. F. Gunsing et al., Phys. Rev. C 85, 064601 (2012)

    Article  ADS  Google Scholar 

  30. F.J. Hambsch, I. Ruskov, Nucl. Sci. Eng. 163, 1 (2009)

    Article  Google Scholar 

  31. M.S. Moore, Nucl. Instrum. Methods 169, 245 (1980)

    Article  ADS  Google Scholar 

  32. C. Borcea et al., Nucl. Instrum. Methods Phys. Res. A 513, 524 (2003)

    Article  ADS  Google Scholar 

  33. R.J. Brown, L.M. Bollinger, Nucl. Sci. Eng. 4, 576 (1958)

    Article  Google Scholar 

  34. S. Lo Meo et al., Eur. Phys. J. A 51, 160 (2015)

    Article  ADS  Google Scholar 

  35. D. Mancusi et al., Eur. Phys. J. A 53, 80 (2017)

    Article  ADS  Google Scholar 

  36. https://twiki.cern.ch/twiki/bin/view/NTOFPublic/NTOFPublicEAR2Flux

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barbagallo.

Additional information

Communicated by T. Motobayashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabaté-Gilarte, M., Barbagallo, M., Colonna, N. et al. High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN. Eur. Phys. J. A 53, 210 (2017). https://doi.org/10.1140/epja/i2017-12392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12392-4

Navigation